ответ: а) 42,5 см.
Объяснение:
Периметр треугольника по таким данным задачи зависит от того чему равно основание. То есть имеет место два варианта:
1 вариант. Если основание (АС) равно 17 см. Такой треугольник не существует. 8,5+8,5=17 ?
a+b>c, a+c>b, b+c>a, (a>0, b>0, c>0), где a, b и с - длины сторон треугольника.
Другими словами, треугольник существует тогда и только тогда, когда сумма любых двух его сторон больше третьей стороны.
В нашем случае a+b=с, что недопустимо.
***
2 вариант. Основание АС =8,5 см.
Тогда Р=АВ+ВС+АС=2*17+8,5= 42,5 см.
Плоскость треугольника АВС пересекает параллельные плоскости α и β по параллельным прямым.
ВС║В₁С₁║В₂С₂
По условию AB₁ = B₁B₂ = B₂B = 8/3 см, тогда по теореме Фалеса
AС₁ = С₁С₂ = С₂С = 8/3 см
ΔАВС подобен ΔАВ₁С₁ по двум углам (∠АВ₁С₁ = ∠АВС и ∠АС₁В₁ = ∠АСВ как накрест лежащие)
В₁С₁ : ВС = АВ₁ : АВ = 1 : 3
В₁С₁ = 8/3 см
ΔАВС подобен ΔАВ₂С₂ по двум углам (∠АВ₂С₂ = ∠АВС и ∠АС₂В₂ = ∠АСВ как накрест лежащие)
В₂С₂ : ВС = АВ₂ : АВ = 2 : 3
В₂С₂ = 2·8/3 = 16/3 см
а) треугольник АВС разбивается на
равносторонний треугольник АВ₁С₁;
трапецию В₂В₁С₁С₂;
трапецию ВВ₂С₂С.
б) Pab₁c₁ = (8/3) · 3 = 8 cм
Pb₂b₁c₁c₂ = 8/3 + 8/3 + 8/3 + 16/3 = 40/3 = 13 и 1/3 см
Pbb₂c₂c = 8/3 + 16/3 + 8/3 + 8 = 56/3 = 18 и 2/3 см
ответ: а) 42,5 см.
Объяснение:
Периметр треугольника по таким данным задачи зависит от того чему равно основание. То есть имеет место два варианта:
1 вариант. Если основание (АС) равно 17 см. Такой треугольник не существует. 8,5+8,5=17 ?
a+b>c, a+c>b, b+c>a, (a>0, b>0, c>0), где a, b и с - длины сторон треугольника.
Другими словами, треугольник существует тогда и только тогда, когда сумма любых двух его сторон больше третьей стороны.
В нашем случае a+b=с, что недопустимо.
***
2 вариант. Основание АС =8,5 см.
Тогда Р=АВ+ВС+АС=2*17+8,5= 42,5 см.
Плоскость треугольника АВС пересекает параллельные плоскости α и β по параллельным прямым.
ВС║В₁С₁║В₂С₂
По условию AB₁ = B₁B₂ = B₂B = 8/3 см, тогда по теореме Фалеса
AС₁ = С₁С₂ = С₂С = 8/3 см
ΔАВС подобен ΔАВ₁С₁ по двум углам (∠АВ₁С₁ = ∠АВС и ∠АС₁В₁ = ∠АСВ как накрест лежащие)
В₁С₁ : ВС = АВ₁ : АВ = 1 : 3
В₁С₁ = 8/3 см
ΔАВС подобен ΔАВ₂С₂ по двум углам (∠АВ₂С₂ = ∠АВС и ∠АС₂В₂ = ∠АСВ как накрест лежащие)
В₂С₂ : ВС = АВ₂ : АВ = 2 : 3
В₂С₂ = 2·8/3 = 16/3 см
а) треугольник АВС разбивается на
равносторонний треугольник АВ₁С₁;
трапецию В₂В₁С₁С₂;
трапецию ВВ₂С₂С.
б) Pab₁c₁ = (8/3) · 3 = 8 cм
Pb₂b₁c₁c₂ = 8/3 + 8/3 + 8/3 + 16/3 = 40/3 = 13 и 1/3 см
Pbb₂c₂c = 8/3 + 16/3 + 8/3 + 8 = 56/3 = 18 и 2/3 см
Объяснение: