В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Бригман
Бригман
23.05.2023 15:52 •  Геометрия

30 ! в остроугольном треугольнике авс из вершин а и с опущены высоты ap и cq на стороны bc и ab. а) докажите, что углы bpq и bac равны. б) известно, что площадь треугольника abc равна 96, площадь четырехугольника aqpc равна 72, а радиус окружности, описанной около треугольника abc, равен 16/√3. найдите pq.

Показать ответ
Ответ:
попкорн6
попкорн6
26.07.2020 07:25
А) Прямоугольные ΔСQB и ΔAPB подобны по острому углу (угол В-общий)
СQ/AP=QB/PB=ВС/АВ
Откуда QB/ВС=РВ/АВ
Значит ΔАВС и ΔРВQ подобны по 2 пропорциональным сторонам (QB/ВС=РВ/АВ) и углу между ними (угол В-общий). Т.к. у подобных треугольников углы равны, то <BPQ=<BAC, ч.т.д.
б) Sавс=96, Sаqрс=72, значит Sрвq=Sавс-Sаqрс=96-72=24
Отношение площадей 2 подобных треугольников равно квадрату коэффициента подобия: Sрвq/Sавс=24/96=1/4
Значит QB/ВС=РВ/АВ=PQ/AC=1/2 
Из прямоугольного Δ СQB QB/ВС=сos B, cos B=1/2, значит <B=60°
Ра­ди­ус R окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка ABC равен:
R=AC/2sin B
AC=2R*sin 60= 2*16/√3*√3/2=16
PQ=AC/2=16/2=8
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота