Пусть ABCD - данный параллелограмм, а A', B', C', D' - точки, в которые переходят A, B, C, D. Т.к. при параллельном переносе плоскость переходит в параллельную ей плоскость (или в себя), то плоскость α'В'С'D' параллельна плоскости αВCD.Т. к. при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то AA' || BB' || CC' || DD' и AA' = BB' = CC' = DD'.Так что в четырехугольнике AA'D'D противолежащие стороны параллельны и равны, а, значит, AA'D'D — параллелограмм. Тогда A'D' = AD и A'D' || AD.Аналогично A'B' = AB и A'B' || AB; C'D' = CD и C'D' || CD; B'C' = BC и B'C' || BC.Т. к. две прямые, параллельные третьей, параллельны, то получаем, что A'D' || B'C', A'B' || C'D'.А, значит, A'B'C'D' — параллелограмм, равный параллелограмму ABCD (т.к. соответствующие стороны равны). Что и требовалось доказать.
2)
sinA =5,25/14 (геом определение синуса)
x/sinA =2*8 (т синусов) => x =16*5,25/14 =6
3)
x+3 =y+2 (описанный ч-к) => y-x=1
Диагональ по т косинусов; cos120= -0,5; cos60=0,5
x^2 +y^2 +xy =9 +4 -2*3*2*0,5 =7
(x-y)^2 =7 -3xy => 1 =7 -3xy => xy=2
(x+y)^2 =7 +xy =9 => x+y=3
4)
sinB =sin(45+30) =√2/2 *√3/2 + √2/2 *1/2 =(√6 +√2)/4
2/sin45 =AC/sinB (т синусов) => AC =2√2(√6 +√2)/4 =√3 +1
√k +1 =√3 +1 => k=3
5)
AB=a, AD=b
P =2(a+b) => a+b =9
S =ab sinA => ab =20
a^2 +b^2 =(a+b)^2 -2ab =81-40 =41
cosA = −√(1-sinA^2) = −3/5 (тупой угол)
BD^2 =a^2 +b^2 -2ab*cosA (т косинусов) =41 +40*3/5 =65