1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
угол adb и угол в 60 градусов - вертикальные => они равны
угол bad равен 90 градусам тк медиана в равнобедренном треугольнике является высотой
сумма углов треугольника - 180 градусов
получаем, что угол abd - 30 градусов, тк ba - медиана равнобедренного треугольника, то она и его биссектриса, а угол cbd = abd + abc значит угол cbd равен 60 градусам, а тк и угол adb и угол в 60 градусов - вертикальные => они равны то оставшейся угол треугольника тоже 60, а значит треугольник равносторонний по определению
ответ: ну это равносторонний треугольник, все углы равны 60 градусам, все стороны равны, не знаю что уж тебе надо найти, но думаю это есть в равностороннем треугольнике
1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
ответ: искомый угол равен 45°.
Объяснение:
рассмотрим треугольник abd:
угол adb и угол в 60 градусов - вертикальные => они равны
угол bad равен 90 градусам тк медиана в равнобедренном треугольнике является высотой
сумма углов треугольника - 180 градусов
получаем, что угол abd - 30 градусов, тк ba - медиана равнобедренного треугольника, то она и его биссектриса, а угол cbd = abd + abc значит угол cbd равен 60 градусам, а тк и угол adb и угол в 60 градусов - вертикальные => они равны то оставшейся угол треугольника тоже 60, а значит треугольник равносторонний по определению
ответ: ну это равносторонний треугольник, все углы равны 60 градусам, все стороны равны, не знаю что уж тебе надо найти, но думаю это есть в равностороннем треугольнике