Получается ,что известная высота(12) пересекает прямую содержащую сторону (14) за пределами стороны ,потому как(по Пифагору стороны 12 и 21 являются сторонами прямоугольного треугольника ) 21*21-12*12=297,корень кв. приблизительно 17,2 .Думаю заданный параллелограмм имеет очень острый угол при основании у одной вершины и очень тупой при второй ,это о том ,что касается чертежа(вида параллелограмма). Теперь по искомой высоте H=14*sin угла при основании .sin=12/21 .H=14*(12/21)=8 см.Через arcsin можно узнать величины углов ,это 35 и 145 гр. соответственно .
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°