S трапеции где а и в - основания трапеции h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2 Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны) Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2 Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.
y = 2sinx + 1
Объяснение:
На рисунке изображен график функции y = 2sinx + 1
График функции y = sinx сдвинут относительно оси Y на +1 единицу, коэффициент растяжения вдоль оси Y = 2.
Свойства функции y = 2sinx + 1.
Функция y = 2sinx + 1 периодическая, период T = 2π
Ось Y пересечена в т.(0; 1 ):
x = 0; y = 2*sin0 + 1 = 2 * 0 + 1 = 1
Нули функции:
y = 0; 2sinx+1 = 0; sinx = -1/2
x₁ = arcsin(-1/2) + 2πn = 7π/6 + 2πn; n∈Z
x₂ = π - arcsin(-1/2) + 2πn = π - 7π/6 + 2πn = -π/6 + 2πn; n∈Z
Максимальное значение функции y = 2 * 1 + 1 = 3 (т.к. максимальное значение функции sinx = 1)
Минимальное значение функции y = 2 *(-1) + 1 = -2 + 1 = -1 (т.к. минимальное значение функции sinx = -1).
где а и в - основания трапеции
h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2
Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны)
Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2
Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.