3. Через точку С, що не належить двом паралельним площинам Li B, проведено два промені, один з яких перетинає площини і В, в точках A, B,
відповідно, а другий — відповідно в точках A, B, . Відомо, що СА =4см,
в, В. =9см, А.А, СВ. Знайти A,A, iA, B,.
очень
Поскольку плоскость проходит через точки В,С и М, значит она проходит через среднюю линию MN грани АСD, параллельную ребру ВС. Продлим прямые ВМ и СN до их пересечения в точке Р. Треугольник ВРС равнобедренный, следовательно вершина S пирамиды SBPC спроецируется на высоту PF основания ВРС, являющуюся и медианой основания, в точке Н.
Расположение точки Н на прямой PF зависит от угла SQF между плоскостями ВРС и АSВ. В нашем случае этот угол тупой, поэтому точка Н лежит вне грани АSD пирамиды SABCD.
Так как пирамида правильная, в основании - квадрат.
Диагональ квадрата равна в нашем случае 6√2.
Ее половина ОС=3√2.
Высота пирамиды по Пифагору SO=√(SC²-OC²)=√(144-18)=3√14.
Необходимо найти перпендикуляр SH к плоскости BCMN.
Вариант решения - через подобие прямоугольных треугольников SHE и FOE по равным острым углам при вершине Е. Углы SHE и EOF - прямые.
Из этого подобия имеем соотношение: SH/FO=SE/EF и SH=FO*SE/EF.
Высота пирамиды SO=3√14 (по Пифагору из треугольника SOC).
Тогда QG=0,5*SO (так как MN - средняя линия треугольника ASD, и значит QG - средняя линия треугольника KSO).
Из подобия треугольников QGF и EOF имеем ЕО=FO*QG/FG.
FO=3, QG=1,5√14, FG=4,5. Тогда ЕО=3*1,5√14/4,5=√14 и, следовательно, SE=SO-EO=2√14.
EF находим из треугольника EOF по Пифагору:
EF=√(OF²+OE²)=√(9+14)=√23. Тогда SH=3*2√14/√23.
ответ: SH=6√14/√23.
Дано:
SABC - правильная треугольная пирамида
SO - высота SO⊥(ABC)
AB = BC = AC = √10
SA = SB = 5
-------------------------------------------------------------------
Найти:
р(AS, BC) - ?
ΔABC - равносторонний, поэтому:
AO = AB/√3 = √10/√3 × √3/√3 = √30/3
SA² = SO² + AO² ⇒ SO = √SA² - AO² - теорема Пифагора
SO = √5² - (√30/3)² = √25 - 30/9 = √225-30/9 = √195/9 = √195/3
Теперь мы находим объем Пирамиды:
V = 1/3 × Sосн × SO = 1/3 × AB²√3/4 × SO = 1/3 ×(√10)²×√3/4 × √195/3 = 1/3 × 10√3/4 × √195/3 = 1/3 × 5√3/2 × √195/3 = 5√585/18 = 5×√9×65/18 = 5×3√65/18 = 15√65/18 = 5√65/6
Но с другой стороны можно и так записать формулу:
V = 1/3 × S(ΔBCS) × h (1), где h – искомое расстояние ⇒ р(AS, BC) = h
Проведем SM⊥BC ⇒ SM = h.
Так как ΔSMB - прямоугольный (∠SMB = 90°), тогда используется по теореме Пифагора:
SB² = SM² + MB² ⇒ SM = √SB² - MB² - теорема Пифагора
MB = BC/2 = √10/2
SM = √5² - (√10/2)² = √25 - 10/4 = √100-10/4 = √90/4 = √90/2 = √9×10/2 = 3√10/2
И теперь находим площадь ΔSBC:
S(ΔSBC) = 1/2 × SM × BC = 1/2 × 3√10/2 × √10 = 30/4 = 15/2
И теперь мы находим высоту из объема пирамиды (1):
V = 1/3 × S(ΔBCS) × h ⇒ h = 3V/S(ΔBCS) - нахождение высоты ΔSBC
h = 3 × 5√65/6 / 15/2 = 5√65/2 / 15/2 = 5√65/12 = √65/3 ⇒ SM = р(AS, BC) = h = √65/3
ответ: р(AS, BC) = √65/3
P.S. Рисунок показан внизу↓