Перпендикуляр, проведённый из вершины треугольника к прямой содержащей противолежащую сторону.Сумма длин сторон треугольника.Треугольник с двумя равными сторонами.Треугольник с углом равным 90°.Большая из сторон прямоугольного треугольника.Сторона равнобедренного треугольника.В любом треугольнике их три.Треугольник, один из углов которого больше 90°.Отрезок, соединяющий вершину треугольника с серединой противоположной стороны.Чем является точка А в треугольнике АВС?Отрезок, который делит угол треугольника пополам.
Перпендикуляр, проведённый из вершины треугольника к прямой содержащей противолежащую сторону.Сумма длин сторон треугольника.Треугольник с двумя равными сторонами.Треугольник с углом равным 90°.Большая из сторон прямоугольного треугольника.Сторона равнобедренного треугольника.В любом треугольнике их три.Треугольник, один из углов которого больше 90°.Отрезок, соединяющий вершину треугольника с серединой противоположной стороны.Чем является точка А в треугольнике АВС?Отрезок, который делит угол треугольника пополам.
ответы:
1. Высота. 2. Периметр. 3. Равносторонний. 4. Прямоугольный. 5. Гипотенуза. 6. Основание. 7. Угол. 8. Тупоугольный. 9. Медиана. 10. Вершина. 11. Биссектриса.
Объяснение:
А) Дано: ∆ABC - равнобедренный, BH - биссектрисса
Рассмотрим ∆ABH и ∆CBH
1) AB=BC (по условию)
2) <ABH=<CBH (т.к. BF - биссектрисаа)
3) BH - общая сторона
∆АBH=∆ACBH (по двум сторонам и углу между ними) => AH=HC => BG - медиана
<AHC=<BHC - смежные углы = > прямые => <AHC=<BHC=90° => CH - высота
Ч.т.д
Б) Дано: ∆ABC - равнобедренный, BH - медиана
Расмотрим ∆ABH и ∆CBH
1) AC=BC (по условию)
2) AH=CH (по условию, что CH медиана)
3) <BAH=<CBH (углы при основании)
∆ABH = ∆CBH (по двум сторонам и углу между ними)
Из равенства треугольников следует равенство соответсвующих углов.
<ABH=<CBH => CH - биссектриса
<AHB=<CHB - смежные => прямые => <AHB= <CHB = 90° => CH - высота треугольника ABC
Ч.т.д.