24. Знайдіть площу трапеції, середня лінія якої дорівнюе 7 см, а висота - 8 см.
25. Дві сторони трикутника дорівнюють 4,3 см і 1,2 см,
а довжина третьої сторони дорівнює цілому числу санти-
метрів. Якого найменшого та якого найбільшого значень
може набувати периметр цього трикутника?
Розв'яжіть та підготуйтеся до вивчення нового матеріалу
Дано:
<AOB и <COD
<COD внутри <AOB
AO ┴ OD; CO ┴ OB;
<AOB - <COD = 90°
Найти: <AOB и <COD.
Решение
Т.к . AO ┴ OD; CO ┴ OB,
то <AOD = 90; <COB = 90°.
<COD = <AOD - <AOC
<COD = <COB - <DOB
<COD = 90° - <AOC
<COD = 90° - <DOB
Получим
<AOC = 90° - <COD
<DOB = 90° - <COD
Следовательно <AOC = <DOB
2) По условию: <AOB - <COD = 90°
Но если от всего угла <AOB отнять <COD, то останутся два равных угла <AOC и <DOB, значит, это их сумма равна 90°.
<AOC + <DOB = 90° =>
<AOC = <DOB = 90°/2 = 45°
3) <COD = 90° - <DOB
<COD = 90° - 45°=45°
4) <AOB = <AOC + <DOB + <DOB
<AOB = 45° + 45° + 45° = 135°
ответ: <AOB - 135°; <COD=45°
Решение
Площадь боковой поверхности призмы равна произведению ее высоты на периметр основания.
Сумма углов при одной стороне параллелограмма равна 180°
Следовательно, < АВС = 180° - 30° = 150°
Пусть АВ = 4см
ВС = 4√3 см
Найдем по теореме косинусов диагональ основания АС.
АС² = АВ² + ВС² - 2*АВ*ВС* cos (150°)
косинус тупого угла - число отрицательное.
АС² = 16 + 48 + [32√3*(√3)]/2=112
АС = √112 = 4√7
Высота призмы
СС₁ = АС / ctg(60°)=(4√7) / 1/√3
CC₁ = 4√21
Площадь боковой поверхности данной призмы
S = H*P = 4√21*2(4+4√3) = 32√21*(1+√3) см²
ответ: 32√21*(1+√3) см²