21. 22.8-суреттегі шеңберге іштей сы-
зылған ABCDEF алтыбұрышының А,
С және Е бұрыштарының қосынды-
сын табыңдар.
22. Дұрыс он екі бұрыштың қабырғасы
1-ге тең. Оған сырттай және іштей
сызылған шеңберлердің радиустарын
табыңдар (22.9-сурет).
23. 1 метр — экватордың ұзындығының
22.8-сурет
қырық миллионыншы бөлігі болаты-
нын ескеріп, Жер шарының радиусын
табыңдар.
Найдем длину стороны квадрата.
Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА.Значит длина стороны квадрата равна √[(Хb-Xa)²+(Yb-Ya)²] =√29.
Мы знаем, что диагонали квадрата равны произведению его стороны на √2, то есть = √58 и в точке деления делится пополам. Итак, мы имеем два уравнения: (1)√[(Хd-Xa)²+(Yd-Ya)²] =√29 - для длины |АВ| квадрата и (2)√[(Хd+Xb)²+(Yd+Yb)²] =√58 для длины |ВD|его диагонали. Решим систему из двух уравнений и найдем координаты вершины D(Xd;Yd).
(1) √[(Хd-Xa)²+(Yd-Ya)²] =√29 или (Хd+2)²+(Yd-1)²=29 или Хd²+4Хd+Yd²-2Yd=24.
(2) √[(Хd-Xb)²+(Yd+Yb)²] =√58 или (Хd-3)²+(Yd-3)²=58 или Хd²-6Хd+Yd²-6Yd=40.
Из (1) вычтем (2):10Xd+4Yd=-16. Yd=-(5Xd+8)/2.
Подставляем это значение в (1):
4Хd²+16Xd+25Xd²+80Xd+64+20Xd+32=96 или 29Хd²+116Xd=0 или Хd²+4Xd=0. Отсюда Xd1=0 и Xd2=-4. Соответственно Yd1=-4, а Yd2=6.
Итак, мы получили координаты вершины D: D1(0;-4) и D2(-4;6).
Мы помним, что диагонали квадрата делятся в точке пересечения пополам. Найдем координаты середины диагонали BD. Координаты этой точки равны половине суммы координат начала и конца отрезка (вектора) BD: (0+3)/2=1,5 и (-4+3)/2= -0,5.
Итак, имеем точку пересечения диагоналей: О1(1,5;-0,5) и аналогично О2(-0,5;4,5).
Зная эти координаты, найдем координаты точки С (так как нам известны координаты начала и середины отрезка АС.
(Хс+Xa)/2=Xo и (Yc+Ya)/2=Yo. Отсюда имеем: Хс1=5 и Yc1=-2.
Xc2=1, Yc2=8.
ответ:координаты вершин квадрата: С1(5;-2), D1(0;-4) и C2(1;8),D2(-4;6).
2)Составить уравнение окружности с центром в точке А(4;5),которая касается прямой.
Прямая не указана. Поэтому неизвестен радиус
(х-4)²+(у-5)²=R²
3) Точки пересечения окружности х²+у²=9
с осью абсцисс :
у=0 ⇒ х²+0²=9 ⇒х²=9 ⇒ х=-3 или х=3
(-3;0) и (3;0)
с осью ординат:
х=0 ⇒ у²=9 ⇒ у=-3 или у =3
(0;-3) и (0;3)
4) Запишем уравнение прямой 3х-2у+5=0
в виде у= kx+b
3х-2у+5=0 ⇒
Параллельные прямые имеют одинаковые угловые коэффициенты.
Угловой коэфиициент прямой
Уравнение всех прямых параллельных прямой
имеет вид
Чтобы найти значение параметра b принимаем во внимание тот факто, что прямая проходит через точку (-2;2)
х=-2 у=2
Подставим в выражение
b=2+3=5
ответ.
5) х²+у²-4х+2у+1=0
Чтобы найти центр окружности выделим полные квадраты:
х²-4х+у²+2у+1=0
Прибавим 4 слева и справа
х²-4х+4+у²+2у+1=4
(х-2)²+(у+1)²=4
Координаты центра окружности (2; -1)
Уравнение прямой имеет вид
у=kx+b
Точка (1;2) принадлежит прямой, её координаты удовлетворяют уравнению
2=k·1+b (*)
Центр окружности (2;-1) принадлежит прямой, координаты удовлетворяют уравнению
-1=k·2+b (**)
Решаем систему двух уравнений (*) и (**):
Вычли из первого уравнения второе
ответ. у=-3x-1