20 9 класс на сторонах ab и bc параллелограмма abcd отмечены соответственно точки м и к так, что am: mb=3: 4, bk: kc=2: 3,выразите вектор мк через вектора da=a, dc=b
Доказать: треугольник КМР= треугольнику KPN Доказательство:треугольник KMP= треугольнику КРN по первому признаку равенства треугольников (по двум сторонам и углу между ними), так как KM=KN, угол МКР= углу PKN, сторона КР общая.
Дано: ВС=АД, АВ=СД, АС - общая сторона ать: треугольники АВС и АСД равны.
Док-во: треугольники ABC и АСД равны по третьему признаку равенства треугольников ( по трем сторонам), так как ВС=АД, АВ=СД, АС - общая сторона
Дано: углы АСД и ДСВ равны, углы СДА и СДВ равны, СД - общая сторона Доказать: Треугольники АСД и СДВ
равны Доказательство:треугольники АСД и СДВ равны по второму признаку равенства треугольников (по стороне и двум прилежащим к ней углам), так как углы АСД и ДСВ равны, углы СДА и СДВ равны, СД - общая сторона.
Дано: KM=KN, угол МКР= углу PKN, сторона КР общая
Доказать: треугольник КМР= треугольнику KPN Доказательство:треугольник KMP= треугольнику КРN по первому признаку равенства треугольников (по двум сторонам и углу между ними), так как KM=KN, угол МКР= углу PKN, сторона КР общая.
Дано: ВС=АД, АВ=СД, АС - общая сторона ать: треугольники АВС и АСД равны.
Док-во: треугольники ABC и АСД равны по третьему признаку равенства треугольников ( по трем сторонам), так как ВС=АД, АВ=СД, АС - общая сторона
Дано: углы АСД и ДСВ равны, углы СДА и СДВ равны, СД - общая сторона Доказать: Треугольники АСД и СДВ
равны Доказательство:треугольники АСД и СДВ равны по второму признаку равенства треугольников (по стороне и двум прилежащим к ней углам), так как углы АСД и ДСВ равны, углы СДА и СДВ равны, СД - общая сторона.
Нехай маємо прямокутний трикутник ABC (∠C=90), у якого AC=√5 см – катет і BH=4 см – проекція катета BC на гіпотенузу AB (за умовою).
прямокутний трикутник, рисунок Проведемо висоту CH=h до гіпотенузи AB (AB⊥CH).
За властивістю прямокутного трикутника
h^2= AH•BH
(це виводиться із подібності прямокутних трикутників ABC і CBH).
Нехай AH=x - проекція катета AC на гіпотенузу AB, тоді h^2=4x.
У прямокутному ΔACH (∠AHC=90), у якого AH=x і CH=h=2√x – катети, AC=√5 см – гіпотенуза, за теоремою Піфагора запишемо:
AH^2+CH^2=AC^2, x^2+4x=5, x^2+4x-5=0,
за теоремою Вієта, отримаємо
x1=1 і x2=-5<0, звідси AH=1 см.
AB=AH+BH=1+4=5 см – гіпотенуза ΔABC.
Відповідь: 5.