Обозначим трапецию АВСД. Проведем в ней две высоты ВН и СЕ. Так как трапеция равнобедренная, то высоты будут отсекать равные отрезки на стороне АД. АН=ЕД=(10-6):2=2. Рассмотрим треугольник СЕД: угол СЕД равен 90 градусов, угол СДЕ равен 60 градусов( по усл) следовательно угол ЕСД будет равен 30 градусам, а так как катет ЕД равен 2 и он лежит против угла равного 30 градусам, значит гипотенуза СД будет равна 4( по св-ву прямоугольного треугольника). Трапеция равнобедренная, значит АВ=СД. Периметр трапеции равен: 6+10+4+4=24 (см)
∠ABH = 1/2 × ∠ABC = 1/2 × 150° = 75° (по свойству высоты равнобедренного треугольника).
∠BAH = ∠BCH = ∠AHB - ∠ABH = 90° - 75° = 15°
2) Рассмотрим ΔBC₁C:
∠BC₁C = 90°, ∠CBC₁ = ∠(ABC,α) = 60° так как BC₁∈α, a BC - сторона ΔABC ⇒ ∠C₁CB = ∠CC₁B - ∠CBC₁ = 90° - 60° = 30° ⇒ ΔBC₁C - прямоугольный ⇒ BC = 2BC₁ = 2×12 см = 24 см ⇒ AB = BC = 24 см
3) Далее воспользуемся с формулой площади ΔABC с известным углом:
S(ΔABC) = AB×BC×sin∠ABC - Площадь треугольника ABC с известным углом.
S(ΔABC) = 24 см × 24 см × sin∠150° = 576 см² × 1/2 = 288 см²
Дано:
ΔABC - Тупоугольный равнобедренный
∠ABC = 150° AB = BC ∠(ABC,α) = 60°
CC₁⊥α BC₁ = 12 см
Найти:
S(ΔABC) - ? ∠CBC₁ - ?
1) Проведем высоту BH ⇒ BH⊥AC, следовательно:
∠ABH = 1/2 × ∠ABC = 1/2 × 150° = 75° (по свойству высоты равнобедренного треугольника).
∠BAH = ∠BCH = ∠AHB - ∠ABH = 90° - 75° = 15°
2) Рассмотрим ΔBC₁C:
∠BC₁C = 90°, ∠CBC₁ = ∠(ABC,α) = 60° так как BC₁∈α, a BC - сторона ΔABC ⇒ ∠C₁CB = ∠CC₁B - ∠CBC₁ = 90° - 60° = 30° ⇒ ΔBC₁C - прямоугольный ⇒ BC = 2BC₁ = 2×12 см = 24 см ⇒ AB = BC = 24 см
3) Далее воспользуемся с формулой площади ΔABC с известным углом:
S(ΔABC) = AB×BC×sin∠ABC - Площадь треугольника ABC с известным углом.
S(ΔABC) = 24 см × 24 см × sin∠150° = 576 см² × 1/2 = 288 см²
ответ: S(ΔABC) = 288 см², ∠CBC₁ = 60°
P.S. Рисунок показан в файле внизу↓