2. В параллелограмме MNPQ на сторонах MN, NP, PQ, QM отмечены соответственно точки K, L, S, T так, что MN/PS = MT/PL = 2/3. Отрезки LT и KS пересекаются в точке O. Найдите отношение LO:LT.
3. В треугольнике ABC медианы пересекаются в точке M. Через точку M, проведена прямая, параллельная стороне BC и пересекающая стороны AB и AC в точках D и E соответственно. Найдите BC, если DE=6.
4. В равнобедренном треугольнике ABC с основанием BC проведена медиана AM. Из точки M на сторону AC опущен перпендикуляр MH (H ∈ AC). Известно, что AM:MC=2:1 и площадь треугольника MHC равна 6. Найдите площадь треугольника ABC.
5. В прямоугольном треугольнике ABC с прямым углом С известно, что ∠=12. Найдите sin∠.
P.s Если что,первое задание уже было сделано,а вот с остальными беда
РЕШЕНИЕ
сделаем построение по условию
AB = BC , так как ABCD -квадрат
Точка M делит сторону BC в отношении 1:2 -можно считать ,
что сторона ВС состоит из 3-х равных частей.
Точка E делит сторону AB в отношении 1:3 - можно считать ,
что сторона АВ состоит из 4-х равных частей.
Прямая CE пересекает стороны AM и MD треугольника AMD в точках К и L соответственно.
Дополнительное построение :
обозначим точку М1 - середина отрезка MC , тогда BM=MM1=M1C
проведем через точки М, М1 прямые m, m1 параллельные прямой CE
по теореме Фалеса :
параллельные прямые m,m1,CE отсекают на сторонах угла <EBC
пропорциональные отрезки
на стороне ВС : BM=MM1=M1C , значит на стороне BE тоже три равные части
обозначим для так как сторона АВ состоит из 4-х равных частей, то любая часть может быть
представлена в виде 3х , тогда BE=3x, тогда ЕА=9х, тогда отношение 1 : 3 = 3х : 9х = 3 : 9
рассмотрим угол <BAM
снова теорема Фалеса, снова параллельные прямые m,m1,CE , снова
пропорциональные отрезки на сторонах угла
MK : KA = 2x : 9x = 2 : 9 <это сторона АМ треугольника AMD
Дополнительное построение :
проведем прямую DM до пересечения с прямой АВ - точка Р
проведем прямую DN параллельную прямой CE
прямая DN отсекает на прямой АВ отрезок AN
CE || DN , EN || CD
NECD - параллелограмм , так как противоположные стороны попарно параллельны
следовательно BE=AN , тогда BE : EN = 1 : 4
т. е. отрезок BN состоит из 5-и равных частей.
тогда BE=3x, тогда ЕN=12х, тогда отношение 1 : 4 = 3х : 12х = 3 : 12
рассмотрим угол <NPD
снова теорема Фалеса, снова параллельные прямые m,m1,CE,DN , снова
пропорциональные отрезки на сторонах угла
ML : LD = 2x : 12x = 2 : 12 = 1 : 6 <это сторона МD треугольника AMD
ОТВЕТ
для стороны АМ отношение 2 : 9
для стороны МD отношение 1 : 6
Подробнее - на -
Объяснение:
1) отрезки касательных, проведенных из одной точки к окружности, равны.
2) радиус, проведенный в точку касания, перпендикулярен касательной.
3) центр вписанной в угол окружности лежит на биссектрисе этого угла.
здесь всегда получаются два абсолютно равных прямоугольных треугольника ВОН и ВОК
легко доказывается, что и треугольники ВСН и ВСК тоже абсолютно равные и прямоугольные... (по двум сторонам BH=BK, BC-общая и углу между ними: ВО-биссектриса)))
ВНК равнобедренный и СН=СК ---> ВС _|_ НК
треугольник ВСН (ВСК) - египетский (подобен треугольнику со сторонами 3; 4; 5) его стороны 6; 8; 10