Поскольку отрезок DE (параллельный плоскости альфа) лежит в плоскости треугольника АВС, а плоскость треугольника АВС пересекает плоскость альфа по прямой ВС, значит, линия пересечения плоскостей (линия ВС) параллельна DE. Т.е. DE и ВС параллельны. Отсюда следует, что треугольники АВС и АДЕ – подобны, т.к. отрезок, параллельный стороне треугольника, отсекает треугольник подобный данному. АВ = АД + ДВ = 9 + 2 = 11 условных единиц. Из подобия указанных треугольников можно записать ВС/ДЕ = АВ/АД. Отсюда ВС= АВ*ДЕ/АД = 11*7/9 =77/9 см.
Поскольку отрезок DE (параллельный плоскости альфа) лежит в плоскости треугольника АВС, а плоскость треугольника АВС пересекает плоскость альфа по прямой ВС, значит, линия пересечения плоскостей (линия ВС) параллельна DE. Т.е. DE и ВС параллельны. Отсюда следует, что треугольники АВС и АДЕ – подобны, т.к. отрезок, параллельный стороне треугольника, отсекает треугольник подобный данному. АВ = АД + ДВ = 9 + 2 = 11 условных единиц. Из подобия указанных треугольников можно записать ВС/ДЕ = АВ/АД. Отсюда ВС= АВ*ДЕ/АД = 11*7/9 =77/9 см.
9)
∠BAD=∠EBA=25° (как внутренние накрест лежащие углы при AD//BE и секущей AB).
∠ACD=180°-∠BAD-∠CDA=180°-25°-43°=112°
∠DCB=180°-∠ACD=180°-112°=68°
ответ: ∠DCB=68°.
10)
∠ADE+∠ADC=180° (т.к. смежные)
∠ADC=180°-∠ADE=180°-130°=50°
∠ADC+∠BAD=180° (как внутренние односторонние углы при CE//BA и секущей AD)
∠BAC=∠CAD=(180°-∠ADC)/2=(180°-50°)/2=65°
∠ACD=180°-∠CAD-∠ADC=180°-65°-50°=65°
ответ: ∠ACD=65°.
11)
∠TFR=∠FRP=30° (как внутренние накрест лежащие углы при TF//RP и секущей FR).
ΔRFP-равнобедренный ⇒ ∠FRP=∠RPF=30°.
∠SFT=180°-∠TFR-∠RFP=180°-30°-(180°-∠FRP-∠RPF)=
=180°-30°-(180°-30°-30°)=
=180°-30°-120°=30°
ответ: ∠RPF=30°; ∠SFT=30°.
12)
ΔMEN-равнобедренный ⇒ ∠EMN=∠ENM=37°
∠ENM=∠KNE=37°
ΔEFN-равнобедренный ⇒ ∠FNE=∠FEN=37°
∠NFE=180°-∠FNE-∠FEN=180°-37°-37°=106°
∠KFE=180°-∠NFE=180°-106°=74°
ответ: ∠KFE=74°.