2. Прямокутник зі сторонами 8 см і 10 см обертається навколо меншої сторони. Знайдіть площу повної поверхні отриманого тіла обертання. (Спочатку треба пояснити, яка фігура утвориться в процесі обертання). стар
Треугольник АВС, М -точка касания на АВ, Н- на ВС, К- на АС, уголА=76, уголВ=48, уголС=180-76-48=56, СК=СН как касательные проведенные из одной точки, треугольник СКН равнобедренный, уголНКС=уголКНС=(180-уголС)/2=(180-56)/2=62, по таким же признакам треугольник АМК равнобедренный, уголАМК=уголАКМ=(180-уголА)/2=(180-76)/2=52, треугольник МВН равнобедренный , уголВМН=уголВНМ=(180-уголВ)/2=(180-48)/2=66, уголМКН=180-уголАКМ-уголНКС=180-52-62=66, уголКМН=180-уголАМК-уголВМН=180-52-66=62, уголМНК =180-уголВНМ-уголКНС=180-66-62=52. б) - решить по аналогии с а) 2. Треугольник АВС, М -точка касания на АВ, Н- на ВС, К- на АС, АВ=12, ВС=8, АС=9, КС=СН=х - как касательные, проведенные из одной точки, АК=АС-КС=9-х, АК=АМ=9-х (как касательные), ВН=ВС-НС=8-х, ВН=ВМ=8-х (как касательные), АН+ВМ=АВ, 9-х+8-х=12, 5=2х, х=2,5=СК=СН, ВН=ВМ=8-2,5=5,5, АН=АК=9-2,5=6,5 , вариант б) по аналогии с а)
Дана точка А(-1,5;2). а). Точка, симметричная данной относительно оси 0Х, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Х, на расстоянии, равном расстоянию от данной точки до оси 0Х. То есть это точка В(-1,5;-2). б). Точка, симметричная данной относительно оси 0Y, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Y, перпендикулярно оси 0Y, на расстоянии, равном расстоянию от данной точки до оси 0Y. То есть это точка С(1,5;2). в). Точка, симметричная данной относительно начала координат, лежит на прямой, проходящей через данную точку и начало координат, на расстоянии, равном расстоянию от данной точки до начала координат. То есть это точка D(1,5;-2).
2. Треугольник АВС, М -точка касания на АВ, Н- на ВС, К- на АС, АВ=12, ВС=8, АС=9, КС=СН=х - как касательные, проведенные из одной точки, АК=АС-КС=9-х, АК=АМ=9-х (как касательные), ВН=ВС-НС=8-х, ВН=ВМ=8-х (как касательные), АН+ВМ=АВ, 9-х+8-х=12, 5=2х, х=2,5=СК=СН, ВН=ВМ=8-2,5=5,5, АН=АК=9-2,5=6,5 , вариант б) по аналогии с а)
а). Точка, симметричная данной относительно оси 0Х, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Х, на расстоянии, равном расстоянию от данной точки до оси 0Х. То есть это точка В(-1,5;-2).
б). Точка, симметричная данной относительно оси 0Y, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Y, перпендикулярно оси 0Y, на расстоянии, равном расстоянию от данной точки до оси 0Y. То есть это точка С(1,5;2).
в). Точка, симметричная данной относительно начала координат, лежит на прямой, проходящей через данную точку и начало координат, на расстоянии, равном расстоянию от данной точки до начала координат.
То есть это точка D(1,5;-2).