2. определение параллельных прямых. углы, образованные при пересечении двух прямых третьей.3. углы треугольника равны 15° и 49°. найдите градусную меру третьего угла. определение вертикальных углов. свойство вертикальных углов. признаки равенства прямоугольных треугольников. один из острых углов прямоугольного треугольника 35°. найти градусную меру другого острого угла этого треугольника. дано: bd – биссектриса 4. периметр равнобедренного треугольника равен 35 см. найдите стороны этого треугольника, если боковая сторона на 5 см меньше основания.1. определение равных треугольников. признаки равенства треугольников.2. неравенство треугольников.3. один из углов, образовавшихся при пересечении двух прямых, в 4 раза меньше другого. найдите эти углы.4. периметр равнобедренного треугольника 27 см. найдите стороны треугольника, если основание меньше боковой стороны на 3 см. определение вертикальных углов. свойство вертикальных углов. признаки равенства прямоугольных треугольников. один из острых углов прямоугольного треугольника 35°. найти градусную меру другого острого угла этого треугольника. дано: bd – биссектриса
Теперь доказательство теоремы:
Вертикальные углы равны!
Представь углы 1 , 3 и 2 , 4. Угол 2 является смежным как с углом 1 так и с углом 3. Два угла , у которых одна сторона общая а две другие являются
продолжениями одна другой, называються смежными. По свойству смежных углов < 1+<2=180градусов. <3+<2=180градусов
Отсюда получаем <1=180-<2. <3=180-<2 таким образом, градусные меры углов 1 и 3 равны.
Значит и сами углы равны. Теорема доказана
биссектриса ВК=18 проведена к основанию и является и медианой и высотой (т.к треугольник равнобедренный) => АК=КС=8 и треугольник АКВ прямоугольный
обозначим угол АВК = альфа
тогда угол ВАС = угол ВСА = (90-альфа)
по определению синуса sin(альфа) = 8 / (2V97) = 4 / V97
найдем АВ
по т.Пифагора из треугольника АКВ: АВ^2 = 8^2+18^2 = 388
АВ = V388 = V(4*97) = 2V97
медиану (обозначим ее х), проведенную к боковой стороне (она разобьет боковую сторону на два равных отрезка по V97) можно найти по т.косинусов...
х^2 = 16^2 + (V97)^2 - 2*16*V97*cos(90-альфа) =
256 + 97 - 32*V97*sin(альфа) = 353 - 32*V97*4 / V97 = 353 - 32*4 = 353 - 128 = 225
x = 15