Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость. В нашем случае проекциями данного нам отрезка на плоскости - это отрезки, соединяющие концы данного отрезка на плоскости и перпендикуляра, опущенного на данную плоскость.Но плоскости перпендикулярны, значит эти перпендикуляры - это расстояния от концов отрезка до линии пересечения плоскостей. То есть проекцией отрезка АВ на плоскость α будет отрезок АВ1,а углом между отрезком АВ и плоскостью α будет угол ВАВ1. Соответственно проекцией отрезка АВ на плоскость β будет отрезок ВА1,а углом между отрезком АВ и плоскостью β будет угол АВА1. Синус угла ВАВ1 равен отношению противолежащего катета ВВ1 к гипотенузе AB, то есть Sin(ВАВ1)=12/24=1/2. Значит угол между отрезком АВ и плоскостью α равен 30°. Синус угла АВА1 равен отношению противолежащего катета АА1 к гипотенузе AB, то есть Sin(АВА1)=12√2/24=√2/2. Значит угол между отрезком АВ и плоскостью α равен 45°. ответ: Углы, образованные отрезком с плоскостями равны 30° и 45°.
ΔАВС описан около окружности с центром О периметр Равс=200 см хорда КМ=16 см расстояние от центра О до КМ - это перпендикуляр ОЕ=15 см к хорде КМ. Рассмотрим ΔКОМ - он равнобедренный (ОК=ОМ как радиусы), значит ОЕ - не только высота, но и медиана, и биссектриса. Тогда ОК=√(ОЕ²+(КМ/2)²)=√(15²+(16/2)²)=√(225+64)=√289=17 см Площадь Sавс=Р*R/2=Р*ОК/2=200*17/2=1700 см²
Прямоугольный равнобедренный ΔАВС: катеты АВ=ВС=х гипотенуза АС=√(АВ²+ВС²)=√2х²=х√2 Площадь Sавс=АВ*ВС/2=х²/2 Периметр Равс=2АВ+АС=2х+х√2 Радиус вписанной окружности r=2Sавс/Равс=2х²/2(2х+х√2)=х/(2+√2) Отношение r/АС=х/(2+√2):х√2=1/(√2(2+√2))=1/(2√2+2)
В нашем случае проекциями данного нам отрезка на плоскости - это отрезки, соединяющие концы данного отрезка на плоскости и перпендикуляра, опущенного на данную плоскость.Но плоскости перпендикулярны, значит эти перпендикуляры - это расстояния от концов отрезка до линии пересечения плоскостей. То есть проекцией отрезка АВ на плоскость α будет отрезок АВ1,а углом между отрезком АВ и плоскостью α будет угол ВАВ1. Соответственно проекцией отрезка АВ на плоскость β будет отрезок ВА1,а углом между отрезком АВ и плоскостью β будет угол АВА1.
Синус угла ВАВ1 равен отношению противолежащего катета ВВ1 к гипотенузе AB, то есть Sin(ВАВ1)=12/24=1/2. Значит угол между отрезком АВ и плоскостью α равен 30°.
Синус угла АВА1 равен отношению противолежащего катета АА1 к гипотенузе AB, то есть Sin(АВА1)=12√2/24=√2/2. Значит угол между отрезком АВ и плоскостью α равен 45°.
ответ: Углы, образованные отрезком с плоскостями равны 30° и 45°.
периметр Равс=200 см
хорда КМ=16 см
расстояние от центра О до КМ - это перпендикуляр ОЕ=15 см к хорде КМ.
Рассмотрим ΔКОМ - он равнобедренный (ОК=ОМ как радиусы), значит ОЕ - не только высота, но и медиана, и биссектриса.
Тогда ОК=√(ОЕ²+(КМ/2)²)=√(15²+(16/2)²)=√(225+64)=√289=17 см
Площадь Sавс=Р*R/2=Р*ОК/2=200*17/2=1700 см²
Прямоугольный равнобедренный ΔАВС:
катеты АВ=ВС=х
гипотенуза АС=√(АВ²+ВС²)=√2х²=х√2
Площадь Sавс=АВ*ВС/2=х²/2
Периметр Равс=2АВ+АС=2х+х√2
Радиус вписанной окружности r=2Sавс/Равс=2х²/2(2х+х√2)=х/(2+√2)
Отношение r/АС=х/(2+√2):х√2=1/(√2(2+√2))=1/(2√2+2)