2. Дано точки А (-1; – 3), В(1;1), с (3;-3). Знайдіть координа- ти точки, симетричної початку координат відносно: а) осі симетрії трикутника ABC; б) основи медіани AM трикутника ABC.
В трапеции две стороны ( как правило. это основания) параллельны. Боковые стороны трапеции при ее параллельных основаниях являются секущими. Если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180º. Поэтому сумма углов, которые прилежат к боковым (не параллельным) сторонам трапеции. равна 180º. 120°+80° >180°, следоваетльно, эти углы прилежат к разным боковым сторонам Отсюда второй угол, прилежащий к одной стороне, равен 180°-120°=60° Второй угол, прилежащий к другой стороне, равен 180°-80°=100° ответ: углы 60° и 120°, 80° и 100°
Если диагональное сечение правильной четырёхугольной пирамиды-равнобедренный прямоугольный треугольник, катет которого равен "а", то основание (гипотенуза) этого треугольника - диагональ квадрата основания пирамиды равно а√2. Высота пирамиды - это высота равнобедренного прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а. Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания Р = 4а. Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды: Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) = = a³/3√2.
Если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180º.
Поэтому сумма углов, которые прилежат к боковым (не параллельным) сторонам трапеции. равна 180º.
120°+80° >180°, следоваетльно, эти углы прилежат к разным боковым сторонам
Отсюда второй угол, прилежащий к одной стороне, равен
180°-120°=60°
Второй угол, прилежащий к другой стороне, равен
180°-80°=100°
ответ: углы 60° и 120°, 80° и 100°
Высота пирамиды - это высота равнобедренного
прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а.
Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания
Р = 4а.
Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды:
Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) =
= a³/3√2.