2. Дан AB - перпендикуляр к плоскости α , AC и AD - наклонные, проведенные по разные стороны от перпендикуляра. АС= 15 cм, АD = 18 cм, проекция АС на плоскость α равна 12м. Найдите проекцию наклонной AD .
Делаем дополнительное построение: из точки А опускаем перпендикуляр АК на продолжение стороны ВС. (АК⊥ВС). Точку D соединяем с точкой К, образовав пл-ть ADK. Докажем, что DK - расстояние от точки D до прямой ВС, то есть DK⊥ BC.
Пл-ть ADK ⊥ пл-ти АВС, так как прямая AD, принадлежащая пл-ти АDK, перпендикулярна пл-ти АВС (AD∈ ADK и AD⊥пл-ти АВС ⇒ пл-ть АDK ⊥ пл-ти ABС).
Далее. Поскольку прямая ВС ⊥ АК (линии пересечения пл-тей АВС и АDK), то она перпендикулярна пл-ти ADK.
И поскольку ВС ⊥ пл-ти ADK, то она перпендикулярна каждой прямой пл-ти ADK, проходящей через точку пересечения К. Таким образом, DK⊥BC и является расстоянием от точки D до прямой ВС. DK = 2√43, по условию.
Найдем <B.Из теоремы о сумме углов тр-ка он равен 75 градусам. По теореме синусов имеем,что CB/sinA=AC/sinB=AB/sinC. Значит, AC=(CB*sinB)/sinA=(2 корня из 3 * sin 75)/корень из 3/2=(2 корня из 3 *2*sin75)/корень из 3 (далее корень из трех сокращается)=4 sin75,что приблизительно равно 3,8636. Аналогично рассуждая, получаем,что AB=(CB*sinC)/sinA=4/корень из 2,избавившись от иррациональности в знаменателе,получим,что AB=2 корням из 2. Для нахождения площади воспользуемся формулой S=1/2 AB*AC*sinA=(2 корня из 2 *3,8636)2*корень из 3/2=(двойки сокращаются)=корень из 2 *3,8636*корень из 3/2.Если очень хочется,то можно сократить 3,8636 и 2, тогда получится 1,9318*корень из 2*корень из 3. ответ:2 корня из 2;3,8636;1,9318*корень из 2*корень из 3;75 градусов.
DA = 5см
Объяснение:
Смотри рисунок на прикреплённом фото.
Дано, что DA ⊥ плоскости ΔАВС.
Делаем дополнительное построение: из точки А опускаем перпендикуляр АК на продолжение стороны ВС. (АК⊥ВС). Точку D соединяем с точкой К, образовав пл-ть ADK. Докажем, что DK - расстояние от точки D до прямой ВС, то есть DK⊥ BC.
Пл-ть ADK ⊥ пл-ти АВС, так как прямая AD, принадлежащая пл-ти АDK, перпендикулярна пл-ти АВС (AD∈ ADK и AD⊥пл-ти АВС ⇒ пл-ть АDK ⊥ пл-ти ABС).
Далее. Поскольку прямая ВС ⊥ АК (линии пересечения пл-тей АВС и АDK), то она перпендикулярна пл-ти ADK.
И поскольку ВС ⊥ пл-ти ADK, то она перпендикулярна каждой прямой пл-ти ADK, проходящей через точку пересечения К. Таким образом, DK⊥BC и является расстоянием от точки D до прямой ВС. DK = 2√43, по условию.
∠АВК и ∠АВС смежные углы, поэтому
∠АВК = 180° - ∠АВС = 180° - 120° = 60°.
АК = АВ·sin 60° = 14 · 0.5√3 = 7√3 (cм).
По теореме Пифагора DK² = AK² + DA², откуда
DA = √(DK² - AK²) = √(4 · 43 - 49 · 3) = √172 - 147 = √25 = 5(см)
По теореме синусов имеем,что CB/sinA=AC/sinB=AB/sinC.
Значит, AC=(CB*sinB)/sinA=(2 корня из 3 * sin 75)/корень из 3/2=(2 корня из 3 *2*sin75)/корень из 3 (далее корень из трех сокращается)=4 sin75,что приблизительно равно 3,8636.
Аналогично рассуждая, получаем,что AB=(CB*sinC)/sinA=4/корень из 2,избавившись от иррациональности в знаменателе,получим,что AB=2 корням из 2.
Для нахождения площади воспользуемся формулой S=1/2 AB*AC*sinA=(2 корня из 2 *3,8636)2*корень из 3/2=(двойки сокращаются)=корень из 2 *3,8636*корень из 3/2.Если очень хочется,то можно сократить 3,8636 и 2, тогда получится 1,9318*корень из 2*корень из 3.
ответ:2 корня из 2;3,8636;1,9318*корень из 2*корень из 3;75 градусов.