2. Через точки A, B и C на прямой а проведите прямые, перпендикулярные прямой а. Точность построения проверьте угольником. Выскажите своё мне- ние о взаимоотношении полученных прямых.
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
25.
тр. BCF и тр. BDC
общая сторона BC, 2 равных угла. равны по 2 признаку равенства.
тр. ABE и тр. BCD. 2 равных стороны, равные углы между ними. равны по 1 признаку равенства.
тр. ABE и тр. FBC равны, тк предыдущие треугольники тоже равные.
26.
тр AMB и тр. DNC равны по 3м сторонам. По 3 признаку.
тр. ADM и BNC равны по 3м сторонам, 3 признак.
27.
тр. EDO и тр COF по двум сторонам и углу между ними, 1 признак равенства.
тр. AEO и тр FOB равны по 2м прилежащим углам и стороне. 2 признак
тр. AOD и COB равны, тк предыдущение тр. тоже равны.
28.
тр DEC и тр AFB равны по трем сторонам, 3 признак.
тр FCB и тр. DEA равны по трем сторонам, 3 признак.
29.
тр ADF и тр BEC равны по 2м сторонам и углу между ними. углы равны, тк накрестлежащие. 1 признак
боковые равны по трем сторонам, 3 признак.
31. боковые треугольники равны по 2м сторонам и углу между ними. 1 признак равенства.
32. тр DEO и тр COF равны по 2м сторонам и углу между ними, 1 признак.
боковые равны по 2м сторонам и углу между ними, 1 признак.
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.