2 BC Работа в группах. 1 1. Определите микротему 1-го абзаца. 2. Выпишите из 1-го абзаца сино- Нимичные краткие прилагатель- ные. 3. Найдите и выпишите из 1-го абзаца назывные предложения. Сделайте их синтаксический раз- бор.
На сторонах ВС и АD параллелограмма АВСD отложены равные отрезки ВК и DM, докажи что АКСМ- параллеограм.
Объяснение:
1) Т.к. АВСD параллелограмм , то ∠В=∠D ,АВ=СD.
2) ΔАВК=ΔСDM по двум сторонам и углу между ними : ∠В=∠D ,АВ=СD и ВК=DK по условию. В равных треугольниках соответственные элементы равны →АК=СМ.
3) КС=ВС-ВК
║ ║
АМ=AD-АМ ⇒
КС=АМ ( из длин равных отрезков ВС и АD вычитаем длины равных отрезков ВК и DM )
4) По признаку параллелограмма " если противоположные стороны четырехугольника попарноравны, то этот четырехугольник — параллелограмм" , АВСD-параллелограмм.
На сторонах ВС и АD параллелограмма АВСD отложены равные отрезки ВК и DM, докажи что АКСМ- параллеограм.
Объяснение:
1) Т.к. АВСD параллелограмм , то ∠В=∠D ,АВ=СD.
2) ΔАВК=ΔСDM по двум сторонам и углу между ними : ∠В=∠D ,АВ=СD и ВК=DK по условию. В равных треугольниках соответственные элементы равны →АК=СМ.
3) КС=ВС-ВК
║ ║
АМ=AD-АМ ⇒
КС=АМ ( из длин равных отрезков ВС и АD вычитаем длины равных отрезков ВК и DM )
4) По признаку параллелограмма " если противоположные стороны четырехугольника попарноравны, то этот четырехугольник — параллелограмм" , АВСD-параллелограмм.
Дано:
ΔABC - равнобедренный
AB = BC BK⊥AC BK = 8 см R = 6,25 см
---------------------------------------------------------------
Найти:
AB - ?
1) Сначала найдем сторону OK:
OK = BK-BO = 8 см - R = 8 см - R = 8 см - 6,25 см = 1,75 см
2) Далее находим сторону оснований при теорема Пифагора и потом приравниваем их и находим сторону AB:
Из ΔAOK: AO² = AK² + OK² ⇒ AK² = AO² - OK²
Из ΔABK: AB² = BK² + AK² ⇒ AB² = BK² + AO² - OK²
AB² = BK² + AO² - OK² ⇒ AB = √BK² + AO² - OK²
BK = 8 см, AO = R = 6,25 см, OK = 1,75 см
AB = √(8 см)² + (6,25 см)² - (1,75 см)² = √64 см² + 39,0625 см² - 3,0625 см² = √21,875 см² ≈ 4,68 см
ответ: AB = 4,68 см