2. Апофема правильной четырехугольной пирамиды равна 6, а высота пирамиды равна 3√2. Найдите: а) сторону основания пирамиды; б) площадь ее боковой поверхности; в) объем пирамиды.
1.Надо говорить о прямых не в пространстве, а на плоскости. Данное утверждение не доказывается, а является формулировкой аксиомы параллельности. Если в формулировке звучит, что существует только одна прямая параллельная данной, то эта аксиома для геометрии Евклида. Если две, то это геометрия Лобачевского. Если таких прямых не существует, то геометрия Римана. 2.Возможны три варианта взаимного расположения прямой и плоскости. Взаимное расположение прямой и плоскости. Прямая параллельна плоскости, если она не имеет с плоскостью общих точек. На левомрисунке прямая параллельна плоскости . 2. Прямая пересекает плоскость, если она имеет с плоскостью ровно одну общую точку. 3. Прямая лежит в плоскости, если каждая точка прямой принадлежит этой плоскости.
1. Угол 5 смежный с углом 6, значит угол 6 = 180градусов - 124градуса = 56градусов. Углы 6 и 7 - вертикальные, а значит угол 7 = 56градусов. Углы 5 и 8 - вертикальные, а значит угол 8 = 124градуса. Из того, что прямые a и b параллельны, следует: Углы 5 и 1 - соответственные, а значит угол 1 = 124градуса. Углы 5 и 3 - внутренние односторонние, а значит угол 3 = 180градусов - 124градуса = 56 градусов. Углы 5 и 4 - внутренние накрест лежащие, а значит угол 4 = 124градуса. Углы 6 и 2 - соответственные, а значит угол 2 = 56градусов. Итак: угол 1 = 124 градуса угол 2 = 56 градусов угол 3 = 56 градусов угол 4 = 124 градуса угол 5 = 124 градуса угол 6 = 56 градусов угол 7 = 56 градусов угол 8 = 124 градуса
2. Сначала обозначим угол, вертикальный углу 2 цифрой 3. Т.к. углы 2 и 3 вертикальные, то они равны. Значит мы можем равенство L1 + L2 = 180градусов заменить равенством L1 + L3 = 180градусов. Получаем, что углы 1 и 3 внутренние односторонние, и они равны 180градусам. А т.к. сумма внутренних односторонних углов равна 180градусам, то прямые a и b параллельны. ч.т.д.
3. Сначала обозначим угол, вертикальный углу 1 цифрой 4. Т.к. углы 1 и 4 вертикальные, то они равны. Значит мы можем равенство L1 + L2 = 180градусам заменить равенством L4 +L2= 180градусов. Т.к. L2 = L3, то L4 + L3 = 180градусов. Т.к. углы 4 и 3 - внутренние односторонние,и их сумма равна 180 градусам, то прямые a и c параллельны. ч.т.д.
Данное утверждение не доказывается, а является формулировкой аксиомы параллельности.
Если в формулировке звучит, что существует только одна прямая параллельная данной, то эта аксиома для геометрии Евклида.
Если две, то это геометрия Лобачевского.
Если таких прямых не существует, то геометрия Римана.
2.Возможны три варианта взаимного расположения прямой и плоскости. Взаимное расположение прямой и плоскости.
Прямая параллельна плоскости, если она не имеет с плоскостью общих точек. На левомрисунке прямая параллельна плоскости .
2. Прямая пересекает плоскость, если она имеет с плоскостью ровно одну общую точку.
3. Прямая лежит в плоскости, если каждая точка прямой принадлежит этой плоскости.
Углы 6 и 7 - вертикальные, а значит угол 7 = 56градусов.
Углы 5 и 8 - вертикальные, а значит угол 8 = 124градуса.
Из того, что прямые a и b параллельны, следует:
Углы 5 и 1 - соответственные, а значит угол 1 = 124градуса.
Углы 5 и 3 - внутренние односторонние, а значит угол 3 = 180градусов - 124градуса = 56 градусов.
Углы 5 и 4 - внутренние накрест лежащие, а значит угол 4 = 124градуса.
Углы 6 и 2 - соответственные, а значит угол 2 = 56градусов.
Итак: угол 1 = 124 градуса
угол 2 = 56 градусов
угол 3 = 56 градусов
угол 4 = 124 градуса
угол 5 = 124 градуса
угол 6 = 56 градусов
угол 7 = 56 градусов
угол 8 = 124 градуса
2. Сначала обозначим угол, вертикальный углу 2 цифрой 3. Т.к. углы 2 и 3 вертикальные, то они равны. Значит мы можем равенство L1 + L2 = 180градусов заменить равенством L1 + L3 = 180градусов. Получаем, что углы 1 и 3 внутренние односторонние, и они равны 180градусам. А т.к. сумма внутренних односторонних углов равна 180градусам, то прямые a и b параллельны. ч.т.д.
3. Сначала обозначим угол, вертикальный углу 1 цифрой 4. Т.к. углы 1 и 4 вертикальные, то они равны. Значит мы можем равенство L1 + L2 = 180градусам заменить равенством L4 +L2= 180градусов. Т.к. L2 = L3, то L4 + L3 = 180градусов. Т.к. углы 4 и 3 - внутренние односторонние,и их сумма равна 180 градусам, то прямые a и c параллельны. ч.т.д.