Решение: Площадь треугольника равна: S=1/2*a*h -где а -основание ; h- высота а=2√3 h-? Высоту (h) найдём по теореме Пифагора Так как треугольник равнобедренный (это известно по условию задачи, что боковые стороны равны по 3см), то высота делит основание пополам: и нам известен один катет -это половина основания: 2√3/2=√3 Гипотенуза-это боковая сторона треугольника, равная 3 Отсюда h²=3²- (√3)²=9-3=6 h=√6 Подставим известные нам данные в формулу площади треугольника: S=1/2*2√3*√6=√3*√6=√18=√(9*2)=3√2
Диагональ делит трапецию на два треугольника: ᐃ АВД и ᐃ ВСД В этих треугольниках основания - основания трапеции, а часть средней линии трапеции является средней линией каждого из треугольников соответственно. Так как средняя линия трапеции делится диагональю на отрезки с разностью 2 см, а каждый из них является средней линией треугольников, найдем эти отрезки. Пусть меньший отрезок ( средняя линия треугольника с меньшим основанием ВС) будет х Тогда второй - х+2 х+2+х=10 см ( такова длина средней линии)2 х=8 х=4 см - длина меньшего отрезка. Он равен половине основания ВС ВС=4*2=8 см 4+2=6 см - длина большего отрезка, он равен половине АД АД=6*2=12 см
Площадь треугольника равна:
S=1/2*a*h -где а -основание ; h- высота
а=2√3
h-?
Высоту (h) найдём по теореме Пифагора
Так как треугольник равнобедренный (это известно по условию задачи, что боковые стороны равны по 3см), то высота делит основание пополам:
и нам известен один катет -это половина основания: 2√3/2=√3
Гипотенуза-это боковая сторона треугольника, равная 3
Отсюда
h²=3²- (√3)²=9-3=6
h=√6
Подставим известные нам данные в формулу площади треугольника:
S=1/2*2√3*√6=√3*√6=√18=√(9*2)=3√2
ответ: Площадь треугольника равна 3√2