14. 3. 1) В равнобедренном треугольнике АВС с основанием ВС ZA = 54°. Найдите угол НВС
2) Внешний угол при основании равнобедренного тре- угольника на 20° больше одного из углов при основании треугольника. Найдите углы при основании.
14. 4. 1) В равнобедренном треугольнике АВС с основанием АС 2B = 64°. Найдите угол АМС, где СМ --- биссектриса тре- угольника.
Объяснение:
given, cosA + cosB + cosC = 3/2
=> 2(2cos(A + B)/2 . cos(A - B)/2) + 2cosC = 3
=> 2(2cos(pi/2 -c/2) .cos(A - B)/2 + 2(1 - 2sin^2(A/2)) = 3
=> 4sin(c/2) .cos(A - B)/2 + 2 - 4sin^2(A/2)) = 3
=> 4sin^2(A/2) - 4sin(c/2) .cos(A - B)/2 + 1 = 0
This is a quadratic equation in sinc/2, and it has real roots
Therefore , Descriminant >= 0
=> (-4cos(A - B)/2)^2 - 4*4*1 >= 0
=> (cos(A - B))^2 >= 1
=> cos(A - B) = 1, since cosine of any angle can't be > 1
=> A - B = 0
=> A = B
Similarily we can prove that B = C
Thus A = B = C, triangle is equilateral