103.2, точки м (2; 0, 0), н (0, 0, 0), p (0, 4; 0), н, (0; 0; 4) являются вершинами прямоугольного параллелепипеда мнркм1h1p1k1-
а) найдите координаты точек м1 и к1
6) найдите координаты векторов h1m1, pm1, h1m +2pm1
в) запишите разложение вектора р=h1m +2pm1 — ра1
по координатным векторам i, j, k.
Сечение цилиндра проходит через хорду АВ в основании, отстоящую от центра окружности на 2 см. ОМ=2 см. АМ=ВМ, М∈АВ, АО=ВО=R.
В прямоугольном тр-ке АОМ АМ=√(АО²-ОМ²)=√(R²-4).
АВ=2АМ=2√(R²-4).
По условию АВ=Н. Объединим оба полученные уравнения высоты.
4√3/R=2√(R²-4), возведём всё в квадрат,
48/R²=4(R²-4),
12=R²(R²-4),
R⁴-4R²-12=0,
R₁²=-2, отрицательное значение не подходит.
R₂²=6.
Н=2√(6-4)=2√2 см.
Площадь искомого сечения равна: S=H²=8 см² - это ответ.
Его можно рассматривать, как 2 соединённых треугольника вершинами в разные стороны.
Тогда линия, соединяющая 2 соседние стороны ромба - это средняя линия треугольника и она параллельна основанию, то есть диагонали.
Аналогично, рассматривая второй треугольник, у него тоже средняя линия параллельна основанию и паралленльна первой линии.
Теперь можно перейти к другой диагонали и получит аналогичный результат - линии, соединяющие середины ромба, параллельны между собой и диагоналям.
То есть, между ними углы по 90 градусов - это и есть доказательство того, что если последовательно соединить середины сторон ромба, то получится прямоугольник.