10. Як розміщені два кола, якщо радіуси дорівнюють 7 см і 13 см, а відстань між центрами – 20 см ? а) дотикаються; б) не мають спільних точок; в) неможливо визначити; г) перетинаються.
Решение: По свойствам правильной усеченной четырехугольной пирамиды её основаниями являются квадраты, а высота пирамиды проходит через центры квадратов. Так точка O - точка пересечения диагоналей квадрата ABCD, то диагонали точкой пересечения делятся пополам по свойствам квадрата. Так как диагонали квадрата равны по теореме, то и половины диагоналей также равны, тогда AO = OB и треугольник ΔAOB - равнобедренный. Так как для треугольника ΔAOB отрезок OK - медиана
(по условию AK = KB), то по теореме медиана равнобедренного треугольника проведенная к основания является биссектрисой и высотой. Треугольник ΔBOK подобен треугольнику ΔBDA по двум углам так как угол ∠OBK - общий и OK ⊥ AB, и DA ⊥ AB.
Так как ΔBOK подобен треугольнику ΔBDA:
.
Так как квадрат ABCD подобен квадрату так как все углы квадрата равны 90°, то можно записать отношения соответствующих элементов квадрата:
.
TFOK - трапеция так как FT║OK по свойствам правильной усеченной четырехугольной пирамиды . Рассмотрим трапеция TFOK.Трапеция TFOK - прямоугольная так как по условию и OK ⊂ ABC .Проведем высоту из точки F в точку H на основании OK. Так как FH - высота трапеции и TO - высота трапеции, то FH = TO = 4. По свойствам трапеции четырехугольник TOHF - прямоугольник, тогда его противоположные стороны равны по свойствам прямоугольника и TF = OH = 4. OK = OH + HK ⇒ HK = OK - OH = 7 - 4 = 3. Рассмотрим прямоугольный (FH ⊥ OK по построению) треугольник ΔFHK. По теореме Пифагора: .
1)Рисуешь небольшой квадрат, и имянуешь каждый угол по порядку так, как написано в условии.
получается:
а)От G до HE(не включительно) будет всего лишь :
GH=4см, т.к. просят отрезок именно НЕ, если бы просили ЕН, то было бы GF, FE =4+4=8см.
б)Центр квадрата намного легче посчитать, в отличие от круга.
Центр квадрата будет равен половине его любой стороны (все стороны равны), значит.
О=4:2=2см.
Если О действительно центр, то самое короткое расстояние от О до любой стороны будет его перпендикуляром, и в нашем случае будет равно 2 см.
ответ:а) 4см,б)2см.
Удачи.
Объяснение:
С тебя лайк.
Объяснение:
Дано: - правильная усеченная четырехугольная пирамида, , , , , AK = KB,
Найти: FK - ?
Решение: По свойствам правильной усеченной четырехугольной пирамиды её основаниями являются квадраты, а высота пирамиды проходит через центры квадратов. Так точка O - точка пересечения диагоналей квадрата ABCD, то диагонали точкой пересечения делятся пополам по свойствам квадрата. Так как диагонали квадрата равны по теореме, то и половины диагоналей также равны, тогда AO = OB и треугольник ΔAOB - равнобедренный. Так как для треугольника ΔAOB отрезок OK - медиана
(по условию AK = KB), то по теореме медиана равнобедренного треугольника проведенная к основания является биссектрисой и высотой. Треугольник ΔBOK подобен треугольнику ΔBDA по двум углам так как угол ∠OBK - общий и OK ⊥ AB, и DA ⊥ AB.
Так как ΔBOK подобен треугольнику ΔBDA:
.
Так как квадрат ABCD подобен квадрату так как все углы квадрата равны 90°, то можно записать отношения соответствующих элементов квадрата:
.
TFOK - трапеция так как FT║OK по свойствам правильной усеченной четырехугольной пирамиды . Рассмотрим трапеция TFOK.Трапеция TFOK - прямоугольная так как по условию и OK ⊂ ABC .Проведем высоту из точки F в точку H на основании OK. Так как FH - высота трапеции и TO - высота трапеции, то FH = TO = 4. По свойствам трапеции четырехугольник TOHF - прямоугольник, тогда его противоположные стороны равны по свойствам прямоугольника и TF = OH = 4. OK = OH + HK ⇒ HK = OK - OH = 7 - 4 = 3. Рассмотрим прямоугольный (FH ⊥ OK по построению) треугольник ΔFHK. По теореме Пифагора: .