Вам немного не повезло. Ночью я решил Вашу задачу, уже дописывал (примерно 90 %), но вдруг сайт "глюканул", выбросил мой ответ и перестал меня "узнавать". Писать второй раз я уже не стал, и вот, только через 10 часов приступаю снова. AC и ВD - диагонали квадрата и равны 18*√(2). Соединим точку S отрезками с вершинами квадрата. Получится правильная четырехугольная пирамида. Плоскость ASC делит пирамиду пополам. В треугольнике ASC углы SAC и SCA равны 60° (по условию). Значит этот треугольник равносторонний и ребра SA и SC (а также и ребра SB и SD) равны 18*√(2). В грани DSC проведем апофему SE. Она разделит треугольник DSC на два прямоугольных треугольника DSE и ESC. По теореме Пифагора SE= √((18*√(2))^2-9^2)=9*√(7). Площадь треугольника DSC равна 18*9*√(7)/2=81*√(7). Угол между плоскостями определяется углом между перпендикулярами, проведенными к линии пересечения плоскостей, в данном случае к ребру SC. Но, поскольку пирамида правильная, то угол (α) между плоскостями ASC и BSC будет таким же как и между плоскостями ASC и DSC. Значит угол между плоскостями BSC и DSC будет в 2 раза больше (2*α), но вычислить его проще, поэтому будем вычислять угол (2*α). Из точек B и D проведем перпендикуляры (BN) и (DN) к ребру SC. Рассмотрим треугольник BND. Он равнобедренный, BN=DN, а BD=18*√(2). Ранее мы вычислили, что площадь треугольника DSC равна 81*√(7). Но эту же площадь можно определить как SC*DN/2, отсюда DN=2*81*√(7)/(18*√(2))=9*√(7/2). Итак, в треугольнике BND BN=DN=9*√(7/2), BD=18*√(2)=9*√(8). По теореме косинусов получаем: (9*√(7/2))^2+(9*√(7/2))^2-2*(9*√(7/2))*(9*√(7/2))cos(2*α)=(9*√(8))^2 81*7-81*7*cos(2*α)=81*8, cos(2*α)=(-1/7). Тогда sin(α)=√((1+1/7)/2)=√(4/7). α=arcsin(√(4/7)). Вот такой у меня получился ответ. Он конечно "некрасивый", но...
НАЙТИ: S пол. пов. пирамиды ______________________________
РЕШЕНИЕ:
1) Линейным углом двугранного угла называется угол, образованный лучами с вершиной на ребре, лучи которого лежат на гранях двугранного угла и перпендикулярны ребру.
В основании правильной треугольной пирамиды лежит правильный треугольник, то есть ∆ АВС – равносторонний
В ∆ АВС опустим высоту АН на ВС В равностороннем треугольнике высота является и медианой, и биссектрисой → ВН = СН
отрезок SD ( высота пирамиды ) перпендикулярен плоскости основания ∆ АВС Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой, лежащей в этой плоскости → SD перпендикулярен АН АН перпендикулярен ВС Значит, SH перпендикулярен ВС по теореме о трёх перпендикулярах
Из этого следует, что угол SHА – линейный угол двугранного угла АВСS, то есть угол SHА = 45°
2) Рассмотрим ∆ SHD (угол SDH = 90°): Сумма острых углов в прямоугольном треугольнике всегда равна 90° угол HSD = 90° - 45° = 45°
Значит, ∆ SHD – прямоугольный и равнобедренный , SD = DH = h
По теореме Пифагора: SH² = SD² + DH² SH² = h² + h² = 2h² SH = h√2
Как было сказано выше, высота, проведённая в равностороннем треугольнике, является и медианой, и биссектрисой Медианы любого треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2 : 1 , считая от вершины Следовательно, AD : DH = 2 : 1 → AD = 2 × DH = 2h AH = AD + DH = 2h + h = 3h
Сторона равностороннего треугольника вычисляется по формуле:
где а - сторона равностороннего треугольника, h - высота
BC = ( 2√3 × AH ) / 3 = ( 2√3 × 3h ) / 3 = 2√3h
S пол. пов. пирамиды = S осн. + S бок. пов.
В правильной треугольной пирамиде все боковые грани равны друг другу →
S пол. пов. пирамиды = S abc + 3 × S bcs
Площадь равностороннего треугольника вычисляется по формуле:
Писать второй раз я уже не стал, и вот, только через 10 часов приступаю снова.
AC и ВD - диагонали квадрата и равны 18*√(2). Соединим точку S отрезками с вершинами квадрата. Получится правильная четырехугольная пирамида. Плоскость ASC делит пирамиду пополам. В треугольнике ASC углы SAC и SCA равны 60° (по условию). Значит этот треугольник равносторонний и ребра SA и SC (а также и ребра SB и SD) равны 18*√(2). В грани DSC проведем апофему SE. Она разделит треугольник DSC на два прямоугольных треугольника DSE и ESC. По теореме Пифагора SE= √((18*√(2))^2-9^2)=9*√(7). Площадь треугольника DSC равна 18*9*√(7)/2=81*√(7).
Угол между плоскостями определяется углом между перпендикулярами, проведенными к линии пересечения плоскостей, в данном случае к ребру SC. Но, поскольку пирамида правильная, то угол (α) между плоскостями ASC и BSC будет таким же как и между плоскостями ASC и DSC. Значит угол между плоскостями BSC и DSC будет в 2 раза больше (2*α), но вычислить его проще, поэтому будем вычислять угол (2*α).
Из точек B и D проведем перпендикуляры (BN) и (DN) к ребру SC. Рассмотрим треугольник BND. Он равнобедренный, BN=DN, а BD=18*√(2).
Ранее мы вычислили, что площадь треугольника DSC равна 81*√(7). Но эту же площадь можно определить как SC*DN/2, отсюда DN=2*81*√(7)/(18*√(2))=9*√(7/2).
Итак, в треугольнике BND BN=DN=9*√(7/2), BD=18*√(2)=9*√(8). По теореме косинусов получаем:
(9*√(7/2))^2+(9*√(7/2))^2-2*(9*√(7/2))*(9*√(7/2))cos(2*α)=(9*√(8))^2
81*7-81*7*cos(2*α)=81*8, cos(2*α)=(-1/7). Тогда sin(α)=√((1+1/7)/2)=√(4/7).
α=arcsin(√(4/7)).
Вот такой у меня получился ответ. Он конечно "некрасивый", но...
НАЙТИ: S пол. пов. пирамиды
______________________________
РЕШЕНИЕ:
1) Линейным углом двугранного угла называется угол, образованный лучами с вершиной на ребре, лучи которого лежат на гранях двугранного угла и перпендикулярны ребру.
В основании правильной треугольной пирамиды лежит правильный треугольник, то есть ∆ АВС – равносторонний
В ∆ АВС опустим высоту АН на ВС
В равностороннем треугольнике высота является и медианой, и биссектрисой → ВН = СН
отрезок SD ( высота пирамиды ) перпендикулярен плоскости основания ∆ АВС
Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой, лежащей в этой плоскости →
SD перпендикулярен АН
АН перпендикулярен ВС
Значит, SH перпендикулярен ВС по теореме о трёх перпендикулярах
Из этого следует, что угол SHА – линейный угол двугранного угла АВСS, то есть угол SHА = 45°
2) Рассмотрим ∆ SHD (угол SDH = 90°):
Сумма острых углов в прямоугольном треугольнике всегда равна 90°
угол HSD = 90° - 45° = 45°
Значит, ∆ SHD – прямоугольный и равнобедренный , SD = DH = h
По теореме Пифагора:
SH² = SD² + DH²
SH² = h² + h² = 2h²
SH = h√2
Как было сказано выше, высота, проведённая в равностороннем треугольнике, является и медианой, и биссектрисой
Медианы любого треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2 : 1 , считая от вершины
Следовательно, AD : DH = 2 : 1 →
AD = 2 × DH = 2h
AH = AD + DH = 2h + h = 3h
Сторона равностороннего треугольника вычисляется по формуле:
где а - сторона равностороннего треугольника, h - высота
BC = ( 2√3 × AH ) / 3 = ( 2√3 × 3h ) / 3 = 2√3h
S пол. пов. пирамиды = S осн. + S бок. пов.
В правильной треугольной пирамиде все боковые грани равны друг другу →
S пол. пов. пирамиды = S abc + 3 × S bcs
Площадь равностороннего треугольника вычисляется по формуле:
где а - сторона равностороннего треугольника
S пол. пов. пирамиды =
ОТВЕТ: 3√3h² × ( 1 + √2 )