1. Высота правильной треугольной призмы в 2 раза меньше высоты треугольной пирамиды. Найдите отношение стороны основания призмы к стороне основания пирамиды, если их объемы равны.
2. Большее основание прямоугольной трапеции равно 5см, большая боковая сторона-√2см, острый угол-45°. Найдите объем тела, полученного в результате вращения этой трапеции вокруг меньшего основания.
Если можно решить все что на фото(с рисунком и расписанным решением, буду очень благодарна.)
Сумма углов треугольника равна 180°. Так как углы при основании равнобедренного треугольника равны, то угол при вершине равен 180° - 2*30° = 180 - 60 = 120°.
Площадь треугольника равна:
S = 0.5 * AB * BC * sinB = 0.5 AB²sin120°, где AB = BC как боковые стороны.
Тогда AB² = 2S/sin120° = 2*4√3/(√3/2) = 16 ⇒ AB = 4
Теперь рассмотрим прямоугольный треугольник, который образован искомой высотой, одной из боковой сторон и половиной длины основания. Угол, противолежащий искомой высоте, равен 30° по условию. Тогда, по определению синуса, h = AB*sin30° = 4 * 0.5 = 2.
ответ: 2
ответ: 1200π
Объяснение:
Формула объёма прямой призмы V=S•H, где Ѕ - площадь основания, Н - высота призмы.
Высота призмы равна высоте вписанного цилиндра, которая, в свою очередь, равна его оси. Ось цилиндра параллельна боковой грани призмы, диагональ боковой грани принадлежит её плоскости. Эти два отрезка не пересекаются и не параллельны - они скрещиваются. Расстоянием между скрещивающимися прямыми называется расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой.
Окружность основания цилиндра касается боковой грани призмы, радиус перпендикулярен стороне основания, поэтому расстояние между осью цилиндра и диагональю боковой грани призмы равно радиусу цилиндра.
Ѕ(полн. цил)=2Ѕ (осн)+Ѕ(бок).
Ѕ(осн)=πr²=π•(5√2)²=50π ⇒2S=100π
Ѕ(бок)=106π-100π=6π
Ѕ(бок)=2πr•H ⇒ H=6π:2π•5√2=0,3√2
Высота ВК основания (ромба) равна диаметру основания цилиндра=2r=10√2
Сторона ромба АВ=ВС=ВК:sin45°=(10√2•√2):2=20
S(ABCD)=AB•AC•BK=200•10√2=2000√2
V=π•2000√2•0,3√2=1200π