Около трапеции описана окружность - значит, трапеция вписанная и равнобедренная, т.к. в окружность можно вписать только равнобедренную трапецию. Сделаем рисунок, обозначим вершины углов трапеции привычными АВСД Через центр окружности проведем перпендикулярно к основаниям трапеции диаметр. Его отрезок МК, заключенный между основаниями трапеции, является ее высотой и делит основания пополам. ( Основания - хорды, перпендикуляр из центра окружности к хорде делит ее пополам). Соединим центр О с вершинами С и Д. ОС=ОД=R Обозначим ОК=х, тогда ОМ =27-х По т. Пифагора R²=МС²+ОМ² R²=КД²+ОК² Приравняем значения радиуса. МС²+ОМ²=КД²+ОК² 225+(27-х)²=576+х² 54х=378 х=7 ОК=7 R²=КД²+ОК² R²=24²+7² R²=625 R=25
Сделаем рисунок, обозначим вершины углов трапеции привычными АВСД Через центр окружности проведем перпендикулярно к основаниям трапеции диаметр.
Его отрезок МК, заключенный между основаниями трапеции, является ее высотой и делит основания пополам. ( Основания - хорды, перпендикуляр из центра окружности к хорде делит ее пополам).
Соединим центр О с вершинами С и Д.
ОС=ОД=R
Обозначим ОК=х, тогда ОМ =27-х
По т. Пифагора
R²=МС²+ОМ²
R²=КД²+ОК² Приравняем значения радиуса.
МС²+ОМ²=КД²+ОК²
225+(27-х)²=576+х²
54х=378
х=7
ОК=7
R²=КД²+ОК²
R²=24²+7²
R²=625
R=25
1) Центром вписанной окружности треугольника является точка пересечения биссектрис.
Биссектриса к основанию равнобедренного треугольника является высотой и медианой.
MO - биссектриса, KE - биссектриса, высота и медиана.
ME=EN=10
По теореме Пифагора
KE =√(MK^2-ME^2) =12*2 =24
По теореме о биссектрисе
KO/OE =MK/ME =13/5 => OE =5/18 KE =20/3
Или по формулам
S=pr
S=√[p(p-a)(p-b)(p-c)], где p=(a+b+c)/2
Отсюда
r=√[(p-a)(p-b)(p-c))/p]
при a=b
r=c/2 *√[(a -c/2)/(a +c/2)] =10*√(16/36] =20/3
3) Вписанный угол, опирающийся на диаметр - прямой, K=90
MN =2*OM =26
По теореме Пифагора
KN =√(MN^2-MK^2) =5*2 =10
P(KMN) =2(5+12+13) =60