1. В треугольнике АКD вписана окружность которая касаеться его сторон в точках С,Е и F.Найдите периметр треуголька если АС+КЕ+DF=14 см
2.В треугольнике АВС вписана окружность с центром в точке О и радиусом r.Расстояние от точик О до стороны АВ треугольника равно d
Укажите верное равенство
А) r=AB Б)r=OB B) r= Одна вторая AB Г очень
Выразим углы CIM , CKI через a , ACE=180-2a , так как ACB=90 , то BCE=90-(180-2a)=2a-90 , CL-биссектриса , значит EC=KCI=BCE/2=a-45 , аналогично CEL=CEB/2=(180-CEA)/2=90-(a/2) , значит CIK=ECI+CEI=45+(a/2) , откуда CKI=180-(3a/2).
То есть углы в треугольнике IKC равны
I=a/2+45 , C=a-45 , K=180-(3a/2)
По условию IKC равнобедренный , значит надо проверить три условия равенства углов
1) I=C
2) C=K
3) I=K
Подходит только I=K (решая уравнения) , откуда a=135/2
Найдём угол CLK=180-(a-45+180-a)=45 . Получаем
AC/sin45=CL/sina
CL/AB=AC*sina/(AB*sin45)=2*cosa*sina/sqrt(2)=sin(2a)/sqrt(2)=sin135/sqrt(2)=1/2
ответ CL/AB=1/2
Дана прямая призма, в основании которой лежит равнобедренная трапеция АВСД с боковой стороной 5 см, и основаниями 2 см и 8 см. Боковое ребро призмы равно 6 см.
Проекция бокового ребра на нижнее основание равна:
АВ1 = (8-2)/2 = 6/2 = 3 см.
Если гипотенуза 5 см, а один катет 3 см, то второй катет (это высота трапеции) равен 4 см (по Пифагору).
Площадь So основания равна:
So = ((2+8)/2)*4 = 20 см².
Периметр Р трапеции равен:
Р = 2*5 + 2 + 8 = 20 см.
Площадь Sбок боковой поверхности равна:
Sбок = PH = 20*6 = 120 см².
Площадь S полной поверхности призмы равна:
S = 2So + Sбок = 2*20 + 120 = 160 см².