1)в треугольнике abc опущена высота bk=4 см. угол a равен 30 °, угол c равен 60°. найдите kc2)abcd-ромб. из точки пересечения диагоналей (точки o) опущена высота ok на ad. ak=32, dk=18. найдите tg угла kdo.решите
P(DKC) = CD + CK + DK P(DKE) = DE + KE + DK как видно, и в том, и в другом периметре фигурирует сторона DK, а CK = KE = DK. Найдем сторону DK. Диагональ СЕ делит прямоугольник на два треугольника. Периметр треугольника CDE = периметру треугольника CEF = половине периметра прямоугольника CDEF = 28/2 = 14 cм. В свою очередь, периметр CDE равен также сумме периметров DKC и DKE минус 4DK, т.е 14 = 16 + 18 - 4DK 4DK = 16 + 18 - 14 DK = 5 см Диагонали, при пересечении друг с другом, делятся пополам и образуют равнобедренные треугольники, значит DK = CK = КЕ = КF = 5 см. Теперь находим стороны прямоугольника. DС = ЕF = 16 - 5 - 5 = 6 см DE = CF = 18 - 5 - 5 = 8 см Проверка: Р(CDEF) = (6 + 8) * 2 = 28 см
Расстояние от точки S до сторон трапеции равно 5 см.
Объяснение:
Расстояние от точки S до сторон трапеции - это перпендикуляры, проведенные из этой точки к сторонам. Опустим перпендикуляр SO на плоскость трапеции и соединим точку О с концами перпендикуляров от точки S до сторон. По теореме о трех перпендикулярах проекции расстояния от точки S до сторон перпендикулярны сторонам трапеции. Если наклонные (расстояния от S до сторон) равны, то равны и их проекции. Следовательно, точка S проецируется в центр вписанной в трапецию окружности, радиус которой равен половине высоты трапеции, то есть
R = 3√2 см.
Расстояние от точки S до сторон трапеции - это гипотенуза прямоугольного треугольника с катетами - √7 см и 3√2 см.
P(DKE) = DE + KE + DK
как видно, и в том, и в другом периметре фигурирует сторона DK, а CK = KE = DK. Найдем сторону DK. Диагональ СЕ делит прямоугольник на два треугольника. Периметр треугольника CDE = периметру треугольника CEF = половине периметра прямоугольника CDEF = 28/2 = 14 cм. В свою очередь, периметр CDE равен также сумме периметров DKC и DKE минус 4DK, т.е
14 = 16 + 18 - 4DK
4DK = 16 + 18 - 14
DK = 5 см
Диагонали, при пересечении друг с другом, делятся пополам и образуют равнобедренные треугольники, значит DK = CK = КЕ = КF = 5 см.
Теперь находим стороны прямоугольника.
DС = ЕF = 16 - 5 - 5 = 6 см
DE = CF = 18 - 5 - 5 = 8 см
Проверка: Р(CDEF) = (6 + 8) * 2 = 28 см
Расстояние от точки S до сторон трапеции равно 5 см.
Объяснение:
Расстояние от точки S до сторон трапеции - это перпендикуляры, проведенные из этой точки к сторонам. Опустим перпендикуляр SO на плоскость трапеции и соединим точку О с концами перпендикуляров от точки S до сторон. По теореме о трех перпендикулярах проекции расстояния от точки S до сторон перпендикулярны сторонам трапеции. Если наклонные (расстояния от S до сторон) равны, то равны и их проекции. Следовательно, точка S проецируется в центр вписанной в трапецию окружности, радиус которой равен половине высоты трапеции, то есть
R = 3√2 см.
Расстояние от точки S до сторон трапеции - это гипотенуза прямоугольного треугольника с катетами - √7 см и 3√2 см.
По Пифагору: L = √(7+18) = 5 cм.