В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
ussr2017
ussr2017
27.11.2022 16:27 •  Геометрия

1. в правильную треугольную пирамиду вписан конус. найти площадь боковой поверхности этого конуса, если известно, что боковые грани пирамиды наклонены к плоскости основания под углом в 60 град. и радиус круга, вписанного в основание пирамиды, равен 16. 2. определить tg(бета), где (бета) - внутренний угол правильного шестиугольника. решить и понять суть , заранее .

Показать ответ
Ответ:
Быковских
Быковских
01.10.2020 07:49

Решение в приложенном рисунке

Попробовал расширение JPG - не

0,0(0 оценок)
Ответ:
eminka1
eminka1
01.10.2020 07:49

1   Площадь боковой поверхности  конуса равна пи*радиус основания(r)* апофему(l)(отрезок соединяющий точку окружности основания и вершину конуса). Радиус основания =16 по условию. Апофему находим через определение косинуса. Высота конуса, апофема и радиус основания образуют прямоугольный треугольник с углами 90, 60 (по условию) и 30 градусов (сумма углов треугольника=180 градусов)cos60^\circ=\frac{r}{l}\\l=\frac{r}{cos60^\circ}\\l=16*2=32\\

Площадь боковой поверхности=π*r*l=π*16*32=512*π

2  по определению-внутренние угль правильного шестиугольника=120 градусов

tg120^{\circ}=tg(180^{\circ}-60^{\circ})=-tg60^{\circ}=-\sqrt[2]{3}

 

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота