1.В остроугольном треугольнике MNP биссектриса угла М пересекает высоту NK в точке О, причем ОК = 8 см. Найдите расстояние от точки О до прямой MN.
2.Один из углов прямоугольного треугольника равен 60°, а сумма гипотенузы и меньшего катета равна 36 см. Найдите гипотенузу.
3.Постройте прямоугольный треугольник по гипотенузе и острому углу
Sabcd= AD*CH, отсюда
AD=S/CH=96/8=12 дм
2. Зная периметр, найдем АВ:
Pabcd=2AD+2AB, отсюда
AB=(P-2AD)/2=(44-24)/2= 10 дм
3. В прямоугольном треугольнике CHD найдем по теореме Пифагора DH:
DH = √DC²- CH²= √10² - 8² =√36 = 6 дм
4. Треугольники AOD и DНС подобны по первому признаку подобия: два угла одного треугольника соответственно равны двум углам другого. В нашем случае:<AOD=<DHC=90°, <BCD=<CDH как накрест лежащие углы при пересечении двух параллельных прямых ВС и AD секущей CD. Но <BCD=<OAD, поэтому <OAD=<CDH.
5. Для подобных треугольников можно записать:
AD/CD=OD/DH, отсюда
OD=AD*DH/CD=12*6/10=7.2 дм