1. В основании ABCD правильной пирамиды SABCD лежит квадрат со стороной 10см. Высота SO пирамиды равна 12 см. Найдите площадь поверхности и объем пирамиды.
2. Основания пирамиды - прямоугольник со сторонами 3 см и 5 см. Высота пирамиды 10см. Найдите объем пирамиды.
Если можно то к каждой задаче чертеж
Дана правильная четырехугольная пирамида SAВCD, сторона основания "а" и высота "Н" равны 2 см.
Эту задачу можно решит двумя геометрическим и 2) векторным.
1) Угол между плоскостью SAB и прямой АС - это угол между АС и её проекцией на плоскость SAB.
Апофема боковой грани А = √((a/2)² + H²) = √(1² + 2²) = √5.
Косинус угла наклона боковой грани к основанию равен: cos β = 1/√5.
Спроецируем точку С на плоскость SAB - пусть это точка Р.
ВР = a*cos β = 2*( 1/√5)= 2/√5.
Проекция АР = √(a² + BP²) = √(2² + ( 2/√5)²) = √(4 + (4/5)) = √(24/5).
Диагональ АС = 2√2 (по свойству гипотенузы в равнобедренном прямоугольном треугольнике).
Отрезок СР = a*sinβ.
Находим sinβ = √(1 - cos²β) = √(1 - (1/√5)²) = √(1 - (1/5)) = 2/√5.
СР = 2*(2/√5) = 4/√5.
Получили стороны треугольника, где угол САР и есть угол между АС и плоскостью SAB.
Решается по теореме косинусов.
cos CAP = ((√2)² + (√(24/5))² - (4/√5)²)/(2*√2*√(24/5)) = 0,774597.
Угол САР = 0,684719 радиан или 39,23152 градуса.
Тр. ВОМ подобен тр АВС (угол ВОМ = 90 град.( МО - расстояние), угол В - общий , Угол ВМО = углу ВСА (это выходит из равенства предыдущих углов))
Найдем ВО по т. Пифагора из прямоугольного тр. МВО
BO^2 = BM^2 - MO^2
BO^2= 36
BO = 6 см
Коэффициент подобия этих треугольников к = ВА/ ВО = 18/6=3( коэффициент подобия треугольников равен отношению сходственных сторон)
Периметр МВО = ВМ+ВО+МО= 24 см
Периметр АВС = Периметр МВО* к = 24*3 = 72 см(Отношение периметров подобных треугольников равно коэффициенту подобия)
ответ: 72 см