1. в окружность вписан треугольник авс, сторона которого ас совпадает с диаметром. из т. в к ас проведен перпендикуляр вк, причем ак=4, а кс=16. найти: вк, ав, вс, ас.
Если в окружность вписан треугольник АВС сторона которого совпадает с диаметром, то этот треугольник прямоугольный. (Вершина В лежит на окружности и угол АВС опирается на диаметр, значит угол В - прямой). Тогда: АС=АК+КС=4+16=20.
ВК - это высота. Квадрат высоты из прямого угла в прямоугольном треугольнике равен произведению отрезков, на которые высота делит гипотенузу. Тогда ВК^2=4*16. ВК=8. Треугольники АКВ и КВС - прямоугольные из картинки. (а треугольнике АКВ прямой угол АКВ, в треугольнике СВК прямой угол ВКС).
Значит в них зная две стороны (ВК и либо АК либо КС) можно найти третью по теореме Пифагора. АВ^2=AK^2+KB^2=4^2+8^2=80. AВ=корень из 80.
Если в окружность вписан треугольник АВС сторона которого совпадает с диаметром, то этот треугольник прямоугольный. (Вершина В лежит на окружности и угол АВС опирается на диаметр, значит угол В - прямой). Тогда: АС=АК+КС=4+16=20.
ВК - это высота. Квадрат высоты из прямого угла в прямоугольном треугольнике равен произведению отрезков, на которые высота делит гипотенузу. Тогда ВК^2=4*16. ВК=8. Треугольники АКВ и КВС - прямоугольные из картинки. (а треугольнике АКВ прямой угол АКВ, в треугольнике СВК прямой угол ВКС).
Значит в них зная две стороны (ВК и либо АК либо КС) можно найти третью по теореме Пифагора. АВ^2=AK^2+KB^2=4^2+8^2=80. AВ=корень из 80.
ВС^2=8^2+16^2=64+256=320
BC=корень из 320.
ответ: ВК=8
АВ=корень из 80
ВС=корень из 320
АС=20