1.В грани двугранного угла, равного 60 градусов, проведена прямая а, пересекающая его ребро c. Угол между прямыми а и с равен 30 градусов. Вычислите угол между прямой а и другой гранью двугранного угла
2. Точка М, удаленная от плоскости равностороннего треугольника АВС на 10см, одинаково удалена от его вершин.
Вычислите величину двугранного угла с ребром ВС, в гранях которого лежат точки М и А. Сторона треугольника АВС равна 20\sqrt{3} см
3. Дан куб АВСDA1B1C1D1
Вычислите величину двугранного угла, ребром которого является прямая АС, а грани содержат точки В1 и В
ответ: 20.
Объяснение:
Площадь параллелограмма равна произведению сторон на синус угла между ними. Найдем синус угла. В прямоугольном треугольнике тангенс определяется как отношение противолежащего катета к прилежащему. Имеем:
тангенс \alpha= дробь, числитель — a, знаменатель — b = дробь, числитель — корень из { 2}, знаменатель — 4 .
Таким образом, a=x корень из { 2}, b=4x, где x — число.
По теореме Пифагора гипотенуза этого прямоугольного треугольника равна:
c= корень из { 2x в степени 2 плюс 16x в степени 2 }=3x корень из { 2}.
.
В прямоугольном треугольнике синус определяется как отношение противолежащего катета к гипотенузе. Имеем:
синус \alpha= дробь, числитель — a, знаменатель — c = дробь, числитель — x корень из { 2}, знаменатель — 3x корень из { 2 }= дробь, числитель — 1, знаменатель — 3 .
Таким образом,
12 умножить на 5 умножить на дробь, числитель — 1, знаменатель — 3 =20.
ответ: 20.
Дано: ABCD - ромб
AB = 10
<A = 120
Найти: AC, BD = ?
Точка O - пересечение диагоналей AC и BD
Треугольник ABD - р/б (AB=AD т.к ABCD ромб) => AO - биссектриса, высота и медиана.
<BAO = 60 т.к AO - биссектриса
Треугольник ABO - прямоугольный, <ABO = 90-60 = 30
Напротив угла в 30 градусов в прямоугольном треугольнике лежит катет, равный половине гипотенузы AB => AO = 5
т.к ABCD - ромб, его диагонали делятся точкой пересечения пополам => AO=OC = 5 => AC = 2AO = 10
Треугольник ABC - равносторонний (AB=BC=AC) => <B = 60 => <OBC = 30
В треугольнике BOC - прямоугольном BC - гипотенуза = 10, катет OC = 5, найдем сторону BO по теореме Пифагора:
BO² = BC²-OC²
BO² = 10²-5²
BO² = (10-5)(10+5)
BO² = 5*15 = 75
BO = √75
BD = 2√75
BD = 2*√5*5*3
BD = 10√3
ответ: AC = 10 см; BD = 10√3 см
Объяснение: