1.угол при вершине равнобедренного треугольника равен 30 градусов а основание 6 см найдите длину радиуса описанной окружности 2. укажите симметричную точке р (0; -2; 8) относительно оси оz 3.укажите точку симметричную точке р(2; 3; 4) относительно плоскости ху
Такие задачи следует описывать подробнее или давать их с рисунком.
--------------------
Высота ВН не может быть проведена к АD, т.к. АВ=6 < ВН ( наклонная не может быть меньше перпендикуляра из той же точки).
Следовательно, ВН проведена к СD.
ВН⊥CD, катет СD=АВ=6, гипотенуза ВС=10, и тогда в прямоугольном (египетском) треугольнике ВСD основание Н высоты ВН совпадает с вершиной D.
Площадь параллелограмма равна произведению высоты на сторону, к которой проведена.
S=BH•CD=8•6=48 см²
S=BK•AD=48
AD=BC=10 ⇒
BK=48:10 = 4,8 см
а) Доказательство:
АВ = ВМ, по условию, значит треугольник АВМ - равнобедренный. По свойству равнобедренного треугольника угол ВАМ = углу ВМА.
По свойству параллелограмма ВС параллельно АD, АС - секущая, значит угол АМВ = углу МАD, из вышесказанного следует, что угол ВАМ = углу МАD, значит АМ - биссектрисса
б) Решение:
АВ = СD по свойству параллелограмма,а АВ = ВМ из доказательства. Значит АВ = ВМ = СD = 8 см
МС = 4 по условию. ВС = ВМ + МС = 8 + 4 = 12. По свойству параллелограмма ВС = АD = 12
теперь можем найти площадь: Р = АВ + ВС + СD + DА = 8 + 12 + 8 + 12 = 40 см