1) Доказательство: Проведём диагональ KM.∠LKM = ∠KMN, так как LM║KN.Рассмотрим ΔKLM и ΔMNK.KM - общая сторона, ∠1 = ∠2 ; ∠3 = ∠4 (как накрест лежащие углы при параллельных прямых.LM = KN (по условию) ⇒ ΔKLM = ΔMNK по стороне и двум прилежащим к ней углам.Так как треугольники равны, то и их соответствующие элементы равны. ⇒ LK = MN. ⇒ KLMN- параллелограмм по первому свойству параллелограмма.
ответ: что и требовалось доказать.
2) Доказательство: Проведём диагональ KM.Рассмотрим ΔKLM и ΔMNK.KM - общая сторона, KL = NM ; LM = KN (по условию).⇒ ΔKLM = ΔMNK по трём сторонам.Так как треугольники равны, то и их соответствующие элементы равны. ⇒ KL = NM ; LM = KN. ⇒ KLMN- параллелограмм по первому свойству параллелограмма.
ответ: что и требовалось доказать.
3) Доказательство: Проведём диагональ KM.Рассмотрим ΔKLM и ΔMNK.KM - общая сторона ; ∠K = ∠M ; ∠L = ∠N (по условию).Так как ∠K = ∠M, то будет справедливо, что ∠1 = ∠2 ; ∠3 = ∠4. ⇒ ΔKLM = ΔMNK по стороне и двум прилежащим к ней углам.Так как треугольники равны, то и их соответствующие элементы равны.
4) Доказательство: Рассмотрим ΔLOK и ΔMON.KO = OM ; LO = ON (по условию), ∠LOK = ∠LON (вертикальные). ⇒ ΔLOK = ΔMON по двум сторонам и углу между ними.Так как треугольники равны, то и их соответствующие элементы равны. ⇒ KL = NM.Аналогично и с ΔKON = ΔLOM. ⇒ KN = LM. ⇒ KLMN- параллелограмм по первому свойству параллелограмма.
Если плоскость проходит через данную прямую , параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
Плоскость α проходит через прямую С, параллельную плоскости γ, и пересекает эту плоскость, => линия пересечения а плоскостей α и γ параллельна прямой С. => а||С
Из теоремы о параллельности прямой и плоскости:
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.
Прямая а не лежит в плоскости β и параллельна прямой С, лежащей в плоскости β, значит, прямая а параллельна плоскости β.
Аналогично плоскость β проходит через прямую С, параллельную плоскости γ, пересекает плоскость γ, => линия пересечения b плоскостей β и γ параллельна прямой С. => b || С, значит, b || α.
1) Доказательство: Проведём диагональ KM.∠LKM = ∠KMN, так как LM║KN.Рассмотрим ΔKLM и ΔMNK.KM - общая сторона, ∠1 = ∠2 ; ∠3 = ∠4 (как накрест лежащие углы при параллельных прямых.LM = KN (по условию) ⇒ ΔKLM = ΔMNK по стороне и двум прилежащим к ней углам.Так как треугольники равны, то и их соответствующие элементы равны. ⇒ LK = MN. ⇒ KLMN- параллелограмм по первому свойству параллелограмма.
ответ: что и требовалось доказать.
2) Доказательство: Проведём диагональ KM.Рассмотрим ΔKLM и ΔMNK.KM - общая сторона, KL = NM ; LM = KN (по условию).⇒ ΔKLM = ΔMNK по трём сторонам.Так как треугольники равны, то и их соответствующие элементы равны. ⇒ KL = NM ; LM = KN. ⇒ KLMN- параллелограмм по первому свойству параллелограмма.
ответ: что и требовалось доказать.
3) Доказательство: Проведём диагональ KM.Рассмотрим ΔKLM и ΔMNK.KM - общая сторона ; ∠K = ∠M ; ∠L = ∠N (по условию).Так как ∠K = ∠M, то будет справедливо, что ∠1 = ∠2 ; ∠3 = ∠4. ⇒ ΔKLM = ΔMNK по стороне и двум прилежащим к ней углам.Так как треугольники равны, то и их соответствующие элементы равны.
⇒ KL = NM ; LM = KN. ⇒ KLMN- параллелограмм по первому свойству параллелограмма.
ответ: что и требовалось доказать.
4) Доказательство: Рассмотрим ΔLOK и ΔMON.KO = OM ; LO = ON (по условию), ∠LOK = ∠LON (вертикальные). ⇒ ΔLOK = ΔMON по двум сторонам и углу между ними.Так как треугольники равны, то и их соответствующие элементы равны. ⇒ KL = NM.Аналогично и с ΔKON = ΔLOM. ⇒ KN = LM. ⇒ KLMN- параллелограмм по первому свойству параллелограмма.
ответ: что и требовалось доказать.
Если плоскость проходит через данную прямую , параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
Плоскость α проходит через прямую С, параллельную плоскости γ, и пересекает эту плоскость, => линия пересечения а плоскостей α и γ параллельна прямой С. => а||С
Из теоремы о параллельности прямой и плоскости:
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.
Прямая а не лежит в плоскости β и параллельна прямой С, лежащей в плоскости β, значит, прямая а параллельна плоскости β.
Аналогично плоскость β проходит через прямую С, параллельную плоскости γ, пересекает плоскость γ, => линия пересечения b плоскостей β и γ параллельна прямой С. => b || С, значит, b || α.
Доказано.