1. сторони основи прямокутного паралелепіпеда дорівнюють
аів. діагональ паралелепіпеда нахилена до площини
основи під кутом бета. визначити висоту паралелепіпеда.
площа основи правильної чотирикутної призми 25 см квадратних , а її
бічне ребро – 10 см. знайти площу бічної поверхні призми.
Sполн = 2Sосн + Sбок, где Sполн - площадь полной поверхности призмы, Sосн - площадь основания призмы, Sбок - площадь боковой поверхности призмы.
Sбок = P * h, где P - периметр основания призмы, h - высота призмы, равная длине бокового ребра призмы
P = 10 + 12 + 12 = 34 (см)
Sбок = 34 * 8 = 272 (cм²)
В ранобедренном треугольнике ABC:
Боковые стороны AB = BC = 12 (cм)
Основание AC = 10 см
Высота BD, опущенная на основание равнобедренного треугольника, также является медианой и биссектрисой ⇒ делит AC пополам.
AD = 1/2 * AC
AD = 1/2 * 10 = 5 (cм)
В прямоугольном треугольнике ABD:
Гипотенуза AB = 12 см
Катет AD = 5 см
По теореме Пифагора
AB² = AD² + BD²
BD² = AB² - AD²
BD² = 12² - 5²
BD² = 144 - 25
BD² = 119
BD = √119 (cм)
Sосн = 1/2 * AD * BD
Sосн = 1/2 * 5 * √119
Sполн = 2 * (1/2 * 5 * √119) + 272 = 272 + 5√119 ≈ 282,9 (cм²)
С=180-(90+70)=20,
2) в ∆ABD Угол D=180-(90+50)=40,
Отсюда угол ADO=90-40=50,
3) Угол AOD и DOC смежные, тогда угол AOD=180-70=110,
4) из ∆ADO, угол A=180-(110+50)=20,
5)в ∆ EDC угол С=180-(90+45)=45,
6) в ∆ADC угол CAD=DCA, значит треугольник равнобедренный,AD=DC,
7) в ∆EDC угол DEC=DCE, значит треугольник равнобедренный, ED=DC,
Следовательно AD=ED, тогда треугольник ADE равнобедренный, а у равнобедренного треугольника углы при основании ровны,
Тогда из ∆ADE : угол А=Е : Тогда (180-50)/2=65.
ответ:65.