1. Сторона правильного треугольника равна 5√3 см. Около него описана окружность. Найдите длину окружности и площадь круга.
2. Чему равна площадь кругового сектора и длина дуги окружности с радиусом 10 см, если градусная мера дуги равна 150°.
3. Периметр правильного треугольника, списанного в окружность, равен 6√3 см. Найдите периметр правильного шестиугольника, вписанного в ту же окружность.
4. Треугольник ABC вписан в окружность с центром O. Сторона BC = 4 дм, ∠BAC = 30°. Найдите площадь закрашенной фигуры на рис.1
Если отрезки пересекающихся медиан равны, то и медианы равны.
Если медианы треугольника равны, значит, треугольник равносторонний.
Применив теорему о том, что медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, найдем длину медиан:
ОА₁=√8, тогда АО=2√8, а АА₁=3√8.
АА₁=ВВ₁=СС₁=3√8=6√2.
В равностороннем треугольнике медиана является биссектрисой и высотой.
Найдем сторону АС через медиану ВВ₁ по формуле
ВВ₁=(АС√3)\2
6√2=(АС√3)\2
АС√3=12√2
АС=(12√2)\√3=4√6
Найдем площадь АВС
S=1\2 * AC * ВВ₁ = 1\2 * 4√6 * 6√2 = 2√6 * 6√2 = 12√12=24√3 (ед²)
Подробнее - на -
Объяснение:
1) Находим координаты точки О - центра ромба и середины диагоналей.
Середина АС: О((1+4)/2=2,5; (-2+5)/2=1,5; (7+7)/2=7) = (2,5; 1,5; 7).
Вершина В симметрична точке Д относительно точки О.
Хв = 2Хо - Хд = 2*2,5 - (-1) = 5 + 1 = 6.
Ув = 2Уо - Уд = 2*1,5 - 3 = 3 - 3 = 0.
Zв = 2Zо - Zд = 2*7 - 6 = 14 - 6 = 8.
Координаты вершины В (6; 0; 8).
Длина диагонали BD = √((-1-6)²+(3-0)²+(6-8)²) = √(49+9+4) =√62 ≈ 7,874008.
2) найти длину вектора 2AB-3BC.
Вектор АВ: (5; 2; 1), 2АВ: (10; 4; 2),
Вектор ВС: ( -2; 5; -1), 3ВС: (-6; 15; -3),
Вектор 2AB-3BC: (16; -11; 5).
Длина его L = √(16²+(-11)²+5²) = √(256 + 121 + 25) = √402 ≈ 20,04994 .
3) определить, какие из внутренних углов ромба тупые.
Определим угол между найденными векторами АВ (5;2;1) и ВС ( -2; 5; -1):
Косинус угла отрицателен, значит угол между векторами АВ и ВС (это угол А) и противолежащий ему угол С тупые.
4)