В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
elinatyul
elinatyul
08.11.2021 23:19 •  Геометрия

1. Сформулируйте свойство прямой, принимаемое за аксиому. единой.
2. Какая фигура называется лучом?
3. Как обозначается луч?
4. Как по-другому называется луч?
5. Как по-другому называется вершина луча?
6. Какая фигура называется отрезком?
7. Как обозначается отрезок?
8. Какие операции можно производить с отрезками?
9. Как обозначается равенство отрезков?
10. Какая точка называется серединой отрезка?​

Показать ответ
Ответ:
vika23562
vika23562
16.11.2021 08:09

В таких заданиях в основном ведётся работа с формулами. Прежде, чем притупить к заданям, вспомним формулу основного тригоносетрического тождества, которая в основном тут и будет использоваться:

{ \sin }^{2} \alpha + { \cos}^{2} \alpha = 1

1) Если мы воспользуемся основным тригоносетрическим тождеством, выразив оттуда косинус в квадрате, то получим как раз таки это выражение, значит его можно упростить так:

1) \: 1 - { \sin }^{2} \alpha = { \cos}^{2} \alpha

2) Аналогично предыдущему, тоже опираясь на основное тригоносетрическое тождество, получим:

2) \: 1 - { \cos}^{2} \alpha = { \sin }^{2} a

3) Это выражение для начала можно сложить по формуле разности квадратов, после чего преобразуем полученное выражение так же, как и во втором:

3) \: (1 - \cos\alpha )(1 + \cos \alpha ) = 1 - { \cos }^{2} \alpha = { \sin }^{2} \alpha

4) Опять же, опираясь на основное тригоносетрическое тождество можно синус в квадрате плюс косинус в квадрате заменить на единицу, в результате чего мы получим:

4) \: 1 + { \sin}^{2} \alpha + { \cos}^{2} \alpha = 1 + 1 = 2

5) Вынесем за скобку синус, а полученное выражение преубразуем, опять же, как во втором пункте:

5) \: \sin \alpha - \sin \alpha \times { \cos }^{2} \alpha = \sin \alpha (1 - { \cos }^{2} \alpha ) = \sin \alpha \times { \sin }^{2} \alpha = { \sin }^{3} \alpha

0,0(0 оценок)
Ответ:
KarinaDelacour
KarinaDelacour
09.06.2021 10:17

ответ:Да,условие ещё то

На чертеже мы видим два треугольника. АDC и ADB

Эти треугольники равны между собой.По чертежу видно(это условие задачи),что сторона АС треугольника ADC равна стороне АВ треугольника

АВD,а также угол 1 равен углу 2.

Сторона AD является общей для обоих треугольников

Поэтому можно с уверенностью утверждать,что треугольники ADC и ADB равны между собой по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то такие треугольники равны между собой

Ну а если треугольники равны,то равны между собой и соответствующие стороны и углы

Объяснение:

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота