Задачи решаются с использованием «Первого признака подобия» двух треугольников. Дано можно записать кратко. Чертежи к каждой задаче нужно перенести в тетрадь.
Пусть SABC - правильная треугольная пирамида с вершиной S. В оновании данной пирамиды лежит правильный (равносторонний) треугольник ABC. Высота пирамиды SO опущена в центр основания - центр треугольника ABC, который также является центром описанной окружности с радиусом R. Расстояние от любой вершины треугольника ABC до центра O равно R= a√3/3, где а - сторона треугольника.⇒ AO=a√3/3 Высота треугольника h (ABC) = a√3/2, где а - сторона треугольника. h (ABC) составляет 3/4 высоты пирамиды (SO) h(АBC) = 3/4 * SO SO = 4/3 * h (ABC) = 4/3 * a√3/2 = 2*a√3/3 Рассмотрим прямоугольный треугольник AOS. Угол AOS=90 град, тк SO - высота. Ребро пирамиды AS - гипотенуза, SO и AO - катеты. Тангенс искомого угла SAO равен отношению противолежащего катета SO к прилежащему катету AO
2*a√3/3 tg(SAO) = = 2 a√3/3
что приблизительно соответствует углу 63°30' (по таблице Брадиса)⇒ такой прямоугольный треугольник существует
1. Четырёхугольник можно описать вокруг окружности тогда и только тогда , когда суммы длин его противоположных сторон равны. 2. Отрезки касательных к окружности , проведенных из одной точки , равны и составляют равные углы с прямой , проходящей через эту точку и центр окружности. Для начала найдём длину боковой стороны CD Найдём её из прямоугольного треугольника COD (∠COD=90° по условию)
Соединим теперь точку О с точками касания окружности со сторонами АВ и BD . По теореме, углы между радиусами этой окружностью и сторонами будут равны 90 градусов. Получаем Четырехугольник OKAM две смежные стороны которого равны , а значит этот четырехугольник квадрат . (Три его угла равны 90 градусов, А - по условию, значит четырехугольник прямоугольный) Теперь рассмотрим треугольник MOD Он прямоугольный. Тк как его гипотенуза OD равна 20 см, а катеты равны а и d , то Углы СDО и ODA равны по теореме. Значит имеем два подобных прямоугольных треугольника (по двум углам) ΔCOD и ΔDOM
Из подобия треугольников имеем:
Но Из системы уравнений получаем: а=12 d=16 c+d=25 c=9 Теперь рассмотрим ещё один четырехугольник KOPB Аналогично доказываем, что он квадрат. Но, одна из его сторон равна а, значит b=a=12⇒
Расстояние от любой вершины треугольника ABC до центра O равно R= a√3/3, где а - сторона треугольника.⇒ AO=a√3/3
Высота треугольника h (ABC) = a√3/2, где а - сторона треугольника.
h (ABC) составляет 3/4 высоты пирамиды (SO)
h(АBC) = 3/4 * SO
SO = 4/3 * h (ABC) = 4/3 * a√3/2 = 2*a√3/3
Рассмотрим прямоугольный треугольник AOS. Угол AOS=90 град, тк SO - высота. Ребро пирамиды AS - гипотенуза, SO и AO - катеты.
Тангенс искомого угла SAO равен отношению противолежащего катета SO к прилежащему катету AO
2*a√3/3
tg(SAO) = = 2
a√3/3
что приблизительно соответствует углу 63°30' (по таблице Брадиса)⇒ такой прямоугольный треугольник существует
2. Отрезки касательных к окружности , проведенных из одной точки , равны и составляют равные углы с прямой , проходящей через эту точку и центр окружности.
Для начала найдём длину боковой стороны CD
Найдём её из прямоугольного треугольника COD (∠COD=90° по условию)
Соединим теперь точку О с точками касания окружности со сторонами АВ и BD . По теореме, углы между радиусами этой окружностью и сторонами будут равны 90 градусов.
Получаем Четырехугольник OKAM две смежные стороны которого равны , а значит этот четырехугольник квадрат . (Три его угла равны 90 градусов, А - по условию, значит четырехугольник прямоугольный)
Теперь рассмотрим треугольник MOD
Он прямоугольный.
Тк как его гипотенуза OD равна 20 см, а катеты равны а и d , то
Углы СDО и ODA равны по теореме. Значит имеем два подобных прямоугольных треугольника (по двум углам) ΔCOD и ΔDOM
Из подобия треугольников имеем:
Но
Из системы уравнений получаем:
а=12
d=16
c+d=25
c=9
Теперь рассмотрим ещё один четырехугольник KOPB
Аналогично доказываем, что он квадрат. Но, одна из его сторон равна а, значит b=a=12⇒