Я это понимаю так: На отрезках АМ и МВ, как на сторонах, построены квадраты АМСД и МВЕF... Далее то тексту.
В прямоугольных треугольниках АМF и СМВ катеты FМ=МВ и АМ=СМ, значит тр-ки равны. ∠МСВ=∠FАМ. В тр-ке СМВ ∠МСВ+∠СВМ=90°, значит ∠NАВ+∠NВА=90°, значит тр-ник АNВ - прямоугольный. Треугольники АNВ и МСВ подобны по трём углам, значит NВ/МВ=АN/СМ, но СМ=АМ ⇒ NВ/МВ=АN/АМ. В тр-ке АNВ это тождество соответствует утверждению теоремы биссектрис, значит NМ - биссектриса тр-ка АNВ. Во вписанном в окружность прямоугольном треугольнике АNВ АВ - диаметр, биссектриса АМ пересекает окружность в точке S, причём ∩AS=∩BS, так как на них опираются равные вписанные углы ANS и BNS. Таким образом, точка S - середина дуги АВ. Это будет работать всегда, при любом положении точки М на отрезке АВ. Т.к. АВ - всегда диаметр одинаковой окружности, все прямые MN проходят через точку S. Доказано.
Скрещивающиеся прямые: Скрещивающиеся прямые – прямые, которые невозможно поместить в одну плоскость, то есть они не параллельны и не пересекаются. Признак скрещивающихся прямых: Если одна из прямых лежит в плоскости, а вторая пересекает эту плоскость в точке, отличной от точек первой прямой, то такие прямые – скрещивающиеся. Через две скрещивающиеся прямые можно провести две параллельные плоскости (единственным образом). Расстояние между скрещивающимися прямыми – есть расстояние между этими плоскостями. Общим перпендикуляром к двум скрещивающимся прямым называется отрезок, перпендикулярный каждой из двух скрещивающихся прямых, концы которого лежат на этих прямых. Длина общего перпендикуляра равна расстоянию между скрещивающимися прямыми. Углом между двумя скрещивающимися прямыми называется угол между двумя пересекающимися прямыми, соответственно параллельными данным скрещивающимся прямым.
пересекающиеся прямые: Пересекающимися называются две прямые лежащие в одной плоскости и имеющие одну общую точку. свойства: Они не параллельны. Пересекаются в одной точке.
параллельные прямые: Параллельными прямыми называются прямые, которые никогда не пересекутся. свойства: Сумма односторонних углов при двух параллельных и секущей равна 180° Накрестлежащие углы при двух параллельных и секущей равны. Соответственные углы при двух параллельных и секущей равны. признаки: Если при двух параллельных и секущей сумма односторонних углов = 180°, то эти прямые параллельны. Если при двух параллельных и секущей накреслежащие углы равны, то прямые паралельны. Если при двух параллельных и секущей соответственные углы равны, то прямые паралельны.
В прямоугольных треугольниках АМF и СМВ катеты FМ=МВ и АМ=СМ, значит тр-ки равны. ∠МСВ=∠FАМ.
В тр-ке СМВ ∠МСВ+∠СВМ=90°, значит ∠NАВ+∠NВА=90°, значит тр-ник АNВ - прямоугольный.
Треугольники АNВ и МСВ подобны по трём углам, значит NВ/МВ=АN/СМ, но СМ=АМ ⇒ NВ/МВ=АN/АМ. В тр-ке АNВ это тождество соответствует утверждению теоремы биссектрис, значит NМ - биссектриса тр-ка АNВ.
Во вписанном в окружность прямоугольном треугольнике АNВ АВ - диаметр, биссектриса АМ пересекает окружность в точке S, причём ∩AS=∩BS, так как на них опираются равные вписанные углы ANS и BNS.
Таким образом, точка S - середина дуги АВ. Это будет работать всегда, при любом положении точки М на отрезке АВ. Т.к. АВ - всегда диаметр одинаковой окружности, все прямые MN проходят через точку S.
Доказано.
Скрещивающиеся прямые – прямые, которые невозможно поместить в одну плоскость, то есть они не параллельны и не пересекаются.
Признак скрещивающихся прямых:
Если одна из прямых лежит в плоскости, а вторая пересекает эту плоскость в точке, отличной от точек первой прямой, то такие прямые – скрещивающиеся.
Через две скрещивающиеся прямые можно провести две параллельные плоскости (единственным образом).
Расстояние между скрещивающимися прямыми – есть расстояние между этими плоскостями.
Общим перпендикуляром к двум скрещивающимся прямым называется отрезок, перпендикулярный каждой из двух скрещивающихся прямых, концы которого лежат на этих прямых.
Длина общего перпендикуляра равна расстоянию между скрещивающимися прямыми.
Углом между двумя скрещивающимися прямыми называется угол между двумя пересекающимися прямыми, соответственно параллельными данным скрещивающимся прямым.
пересекающиеся прямые:
Пересекающимися называются две прямые лежащие в одной плоскости и имеющие одну общую точку.
свойства:
Они не параллельны. Пересекаются в одной точке.
параллельные прямые:
Параллельными прямыми называются прямые, которые никогда не пересекутся.
свойства:
Сумма односторонних углов при двух параллельных и секущей равна 180°
Накрестлежащие углы при двух параллельных и секущей равны.
Соответственные углы при двух параллельных и секущей равны.
признаки:
Если при двух параллельных и секущей сумма односторонних углов = 180°, то эти прямые параллельны.
Если при двух параллельных и секущей накреслежащие углы равны, то прямые паралельны.
Если при двух параллельных и секущей соответственные углы равны, то прямые паралельны.