1. Проведіть 3 прямі, що перетинаються в одній точці. Запишіть усі розгорнуті кути, що утворилися. 2. Накресліть кут: 38°, 124°, 90°, 170° Визначте вид кожного, в більшому з них визначте бісектрису
Значит так: Надо знать что сторона лежащая против большого угла, самая большая сторона в треугольнике ( при условии что он не равностороний, в нашем случае не так) . Запишем неравенство: - всё это конечно углы. Понятно что если ∠P>∠N и ∠O>∠P то ∠O>∠N Отсюда следует, что самая длинная сторона, находится против большого ∠O (сторона NP) ∠P>∠N Значит против ∠Р лежит сторона, большая от стороны против угла N И меньшая стороне NP. В итоге получаем: NP>ON>OP Данное утверждение правильно, так как углы не равны, а значит и стороны не равны.
в четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противолежащих сторон равны.
трапеция - четырехугольник, следовательно, если в неё можно вписать окружность, то сумма ее оснований равна сумме боковых сторон.
сумма оснований данной трапеции 3+5=8, а её средняя линия равна 4
пусть длина меньшего основания а . тогда длина большего - 8-а.
средняя линия трапеции делит саму трапецию на две меньшего размера, высоты каждой из которых равны половине высоты исходной.
площадь трапеции равна полусумме оснований, умноженной на высоту.
пусть высота каждой части трапеции равна h.
тогда площадь верхней трапеции будет (а+4)•h: 2,
а площадь большей (8-а+4)•h: 2=(12-а)•h: 2
по условию отношение этих площадей равно 5/11⇒
[ (а+4)•h: 2]: [ (12-а)•h: 2]=5/11
отсюда 60-5а=11а+44
16а=16
а=1
подробнее - на -
Надо знать что сторона лежащая против большого угла, самая большая сторона в треугольнике ( при условии что он не равностороний, в нашем случае не так) .
Запишем неравенство:
- всё это конечно углы.
Понятно что если ∠P>∠N и ∠O>∠P то ∠O>∠N
Отсюда следует, что самая длинная сторона, находится против большого ∠O (сторона NP)
∠P>∠N
Значит против ∠Р лежит сторона, большая от стороны против угла N
И меньшая стороне NP.
В итоге получаем:
NP>ON>OP
Данное утверждение правильно, так как углы не равны, а значит и стороны не равны.