Это правило треугольника сложения векторов: Видим что конец первого вектора совпадает с началом второго. Значит результатом сложения будет вектор, обозначенный первой буквой первого вектора и второй буквой другого вектора:
АВ + ВD = AD, AC + CD = AD
Видим, что результаты сложения совпадают, что и требовалось доказать.
Аналогично и во втором примере:
AB + BC = AC, AD + DC = АС, что и треб. доказать.
АВСD - параллелограмм
1. CA = СВ + ВА = CD + DA
2. DA = DC + CA = DB + BA
1. вектор AB + вектор BC = AC
2. вектор MN + вектор NN = MN
3. вектор PQ+ вектор QR = PR
4.вектор EF + вектор DE = DE + EF = DF
выразите вектор BC через векторы AB и AC:
BC = AC - AB
взята точка D на стороне треугольника ABC. Выразите вектор BD через векторы AB и AD:
№1
0,25
№2
81x⁴-108x³√6+324x²-72x√6+36
№3
10
Пошаговое объяснение:
№1
0,5sin(-1650°)=-0,5sin(4*360°+210°)=-0,5sin(210°)=-0,5sin(180°+30°)=-0,5sin(-30°)=0,5*sin(30°) =0,5*0,5=0,25
№2
найдем коэффициенты бинома Ньютона из треугольника Паскаля (смотри картинку). Так как у нас 4-я степень, то коэффициенты будут 1,4,6,4,1
Получаем формулу (x+y)⁴=x⁴+4x³y+6x²y²+4xy³+y⁴
у нас x=√6, y=-3x
(√6-3x)⁴=(√6)⁴+4(√6)³*(-3x)+6(√6)²(-3x)²+4(√6)(-3x)³+(-3x)⁴=36-4*6√6*3x+6*6*9x²-4√6*27x³+81x⁴= 36-72x√6+324x²-108x³√6+81x⁴
=81x⁴-108x³√6+324x²-72x√6+36
№3
\begin{gathered}\sqrt{12+\sqrt{44} } *\sqrt{12-\sqrt{44} } = \sqrt{(12+\sqrt{44})(12-\sqrt{44}) } =\sqrt{12^2-(\sqrt{44})^2 }=\\ = \sqrt{144-44 }=\sqrt{100} =10\end{gathered}
12+
44
∗
12−
44
=
(12+
44
)(12−
44
)
=
12
2
−(
44
)
2
=
=
144−44
=
100
=10
Объяснение:
1. вектор AB + вектор BD= вектор AC + вектор CD
2. вектор AB + вектор BC= вектор AD + вектор DC
Это правило треугольника сложения векторов: Видим что конец первого вектора совпадает с началом второго. Значит результатом сложения будет вектор, обозначенный первой буквой первого вектора и второй буквой другого вектора:
АВ + ВD = AD, AC + CD = AD
Видим, что результаты сложения совпадают, что и требовалось доказать.
Аналогично и во втором примере:
AB + BC = AC, AD + DC = АС, что и треб. доказать.
АВСD - параллелограмм
1. CA = СВ + ВА = CD + DA
2. DA = DC + CA = DB + BA
1. вектор AB + вектор BC = AC
2. вектор MN + вектор NN = MN
3. вектор PQ+ вектор QR = PR
4.вектор EF + вектор DE = DE + EF = DF
выразите вектор BC через векторы AB и AC:
BC = AC - AB
взята точка D на стороне треугольника ABC. Выразите вектор BD через векторы AB и AD:
BD = AD - AB
Дан параллелограмм ABCD. Найдите разность:
1. вектор AB- вектор AC = CB
2. вектор BC - вектор CD = AB+BC = AC