1. побудуйте трикутник за двома сторонами і радіусом описаного кола. 2. побудуйте трикутник за стороною, медіаною, проведеною до цієї сторони, і радіусом описаного кола. 3. побудуйте рівносторонній трикутник за радіусом описаного кола.
1. Проведем высоту СК. Получили ВСКН прямоугольник. ВС = НК = 18 сантиметров.
2. Прямоугольный треугольник АВН = прямоугольному треугольнику СКЕ по гипотенузе и углу, так как угол А = угол Е, ВА = СЕ. Значит АН = КЕ = 9 сантиметров.
3. Рассмотрим прямоугольный треугольник АВН. Угол АВН = 180 - 45 - 90 = 45 (градусов). Тогда треугольник АНВ является равнобедренным. Следовательно ВН = НА = 9 сантиметров.
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Дано:
равнобедренная трапеция АВСЕ,
ВС = 18 сантиметров,
ВН — высота,
ВН = 9 сантиметров,
угол ВАЕ = 45 градусов.
Найти S АВСЕ — ?
1. Проведем высоту СК. Получили ВСКН прямоугольник. ВС = НК = 18 сантиметров.
2. Прямоугольный треугольник АВН = прямоугольному треугольнику СКЕ по гипотенузе и углу, так как угол А = угол Е, ВА = СЕ. Значит АН = КЕ = 9 сантиметров.
3. Рассмотрим прямоугольный треугольник АВН. Угол АВН = 180 - 45 - 90 = 45 (градусов). Тогда треугольник АНВ является равнобедренным. Следовательно ВН = НА = 9 сантиметров.
4. Основание АЕ = АН + НК + КЕ = 9 + 18 + 9 = 36 (сантиметров).
5. S АВСЕ = (ВС + АЕ) * ВН = (18 + 36)/2 * 9 = 243 см^2.
ответ: 243 см^2.
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.