Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
1) 36 кв. ед. - площадь осевого сечения конуса.
2) 45π кв. ед. - площадь боковой поверхности усеченного конуса.
Объяснение:
Дано: усеченный конус, r=3, R=6, h=4.
Найти: 1) площадь осевого сечения; 2) площадь боковой поверхности конуса.
1) Осевым сечением усеченного конуса является равнобедренная трапеция.
Назовем ее АВСМ.
ВС=2r = 2*3=6.
АМ = 2R = 2*6 = 12.
2) Площадь боковой поверхности усеченного конуса вычисляется по формуле
, где r и R - радиусы оснований конуса, l - образующая конуса.
В нашем случае l=АВ=СМ.
В равнобедренной трапеции проведем высоты ВН и СН₁.
НН₁СВ - прямоугольник. ВС = НН₁ = 6.
АН=АН₁ = (АМ-НН₁)/2=(12-6)/2=3.
ВН=ОК=4.
ΔАВН - прямоугольны. По теореме Пифагора находим гипотенузу АВ.