1.периметр квадрата, вписанного в окружность, равен 48см. найдите сторону правильного пятиугольника,вписанного в ту же окружность. 2.найдите площадь фигуры, ограниченной дугой окружности и стягивающей её хордой, если длина хорды равна 4м, а градусная мера дуги равна 60 градусов
Сторона правильного пятиугольника, вписанного в окружность равна R * √ ((5 - √5)/2) = 12/√2 * √(5 - √5)/√2 = 6√(5 - √5). Как-то так.
2.Если дуга 60 градусов, то это 1/6 окружности. Поэтому площадь сектора, ограниченного этой дугой и двумя радиусами, проведенными в концы дуги, равна 1/6 площади круга.А хорда разбивает этот сектор на 2 фигуры - сегмент, площадь которого надо найти, и треугольник, который является равносторонним, поскольку угол при вершине - это центральный угол дуги, равный 60 градусам. Итак, радиус круга равен длине хорды, то есть 4, площадь круга pi*16; площадь сектора pi*16/6. Осталось вычислить площадь равностороннего треугольника со стороной 4, и отнять от площади сектора. Площадь треугольника равна (1/2)*4^2*sin(60) = 4*корень(3);Искомая площадь сегмента pi*16/6 - 4*корень(3)Это примерно 1,44937717929727.