1.Основанием пирамиды DАВС является правильный треугольник АВС, сторона которого равна а. Ребро DА перпендикулярно к плоскости АВС, а плоскость DВС составляет с плоскостью АВС угол 300. Найдите площадь боковой поверхности пирамиды.
2. Основанием прямого параллелепипеда АВСDА1В1С1D1 является ромб АВСD, сторона которого равна а и угол равен 600. Плоскость АD1C1 составляет с плоскостью основания угол 600. Найдите:
А) высоту ромба;
Б) высоту параллелепипеда;
В) площадь боковой поверхности параллелепипеда;
Г) площадь поверхности параллелепипеда.
S(бок) = 2S(АДС) + S(ВСД)
Угол ДНА = 30, тогда АД = АН* tg30 = (aV3/2)*V3/3 =a/2
Тогда S(АСД) = 1/2*а*а/2 = а^2 / 4
ДН = а, тогда S(ВСД) = 1/2*а*а = а^2 / 2
S(бок) = 2*(а^2 / 4) * (а^2 / 2) = а^2
Объяснение: