пирамида КАВС, К -вершина , в основании равносторонний треугольник АВС, О-центр основания =пересечение медиан=высот=биссектрис, проводим высоту ВН на АС, уголКВО=45, КО=высота пирамиды=4*корень3, треугольник КВО прямоугольный, уголВКО=90-уголКВО=90-45=45, треугольник КВО равнобедренный, КО=ВО=4*корень3, ВН-медиана, которая в точке пересечения делится в отношении 2/1 начиная от вершины, ВО=2 части, ОН=1 часть=ВО/2=4*корень3/2=2*корень3, ВН=ВО+ОН=4*корень3+2*корень3=6*корень3, АВ=ВС=АС=2*ВН*корень3/3=2*6*корень3*корень3/3=12, площадьАВС=АС в квадрате*корень3/4=144*корень3/4=36*корень3, объем=1/3*площадьАВС*КО=1/3*36*корень3*4*корень3=144
Параллелепипед прямой АВСДА1В1С1Д1, основание ромбАВСД, АВ=ВС=СД=АД, ВД=5, уголВ=120, уголД1ВД=45, ВД=биссектрисе углаВ, уголАВД=уголДВС=1/2уголВ=120/2=60, АВ=АД, треугольник АВД равнобедренный, уголАВД=уголАДВ=60, уголА=180-уголВ=180-120=60, треугольник АВД равносторонний, АВ=АД=ВД=5, треугольник Д1ВД прямоугольный, уголВД1Д=90-уголД1ВД=90-45=45, треугольник Д1ВД равнобедренный, ВД=ДД1=5, ДД1 -высота призмы, площадь боковой поверхности=периметрАВСД*ДД1=(5*4)*5=100, площадь оснований =2*(АВ в квадрате*sinA)=2*(5*5*корень3 /2)=25*корень3, площадь полная=площадь боковой+площадь оснований=100+25*корень3=25*(4+корень3), площадь диагонального сечения ВВ1Д1Д=ВД*ДД1=5*5=25